644
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis of Moringa oleifera coated silver-containing nanocomposites of a new methacrylate polymer having pendant fluoroarylketone by hydrothermal technique and investigation of thermal, optical, dielectric and biological properties

, , , &
Pages 1231-1255 | Received 05 Jan 2022, Accepted 23 Feb 2022, Published online: 08 Mar 2022

References

  • Huang Y, Wang L, Liu Y, et al. Drug-loaded PLCL/PEO-SA bilayer nanofibrous membrane for controlled release. J Biomater Sci Polym Ed. 2021;32(18):2331–2348.
  • Soykan C, Erol İ, Kırbağ S. Synthesis and characterization of poly(1,3-thiazol-2-yl-carbomoyl) methyl methacrylate: its metal complexes and antimicrobial activity studies. J Appl Polym Sci. 2003;90(12):3244–3251.
  • Peymanfar R, Karimi J, Fallahi R. Promising, and broadband microwave‐absorbing nanocomposite based on the graphite‐like carbon nitride/CuS. J Appl Polym Sci. 2020;137(9):48430.
  • Hari J, Keledi G, Pukanszky B. Polymer nanocomposites: structure, interaction, and functionality. Nanoscale. 2012;4(6):1919–1938.
  • Peymanfar R, Javanshir S, Naimi-Jamal MR, et al. Preparation and identification of modified La0.8Sr0.2FeO3 nanoparticles and study of its microwave properties using silicone rubber or PVC. Mater Res Express. 2019;6(7):075004.
  • Mirzaei A, Peymanfar R, Khodamoradipoor N. Investigation of size and medium effects on antimicrobial properties by CuCr2O4 nanoparticles and silicone rubber or PVDF. Mater Res Express. 2019;6(8):085412.
  • Doxastakis M, Nealey PF, Pablo JJ. Local mechanical properties of polymeric nanocomposites. Phys Rev E. 2005;72(3):1539–3755.
  • Aniebo AO, Onu PN. Influence of Moringa oleifera leaf meal on the performance and blood chemistry of starter broilers. Int J Food Agric Vet Sci. 2011;1:38–44.
  • Ndabigengesere A, Narasiah KS, Talbot BG. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 1995;29(2):703–710.
  • Alcayde MAC, Basra SMA, Gull T. Potential of Moringa oleifera L. as livestock fodder crop: a review. Turk J Agric For. 2014;38(1):1–14.
  • Mbikay M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Front Pharmacol. 2012;3:1–12.
  • Lisichkin GV, Krutyakov YA, Kudrinskiy AA, et al. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77(3):233–257.
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848.
  • Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci. 2011;166(1–2):119–135.
  • Fabrega J, Galloway TS, Lead JR, et al. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 2011;37(2):517–531.
  • García-Barrasa J, Monge M, López-de-Luzuriaga JM. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem. 2011;9(1):7–19.
  • Al-Dhabi NA, Arasu MV, Bindhu MR, et al. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J Photochem Photobiol B: Biol. 2020;111836(205):1–28.
  • Krishna M, Rao DN, Sathyavathi R. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting. J Nanosci Nanotechnol. 2011;11(3):2031–2035.
  • Ibrahim HM, Zaghloul S, Hashem M, et al. A green approach to improve the antibacterial properties of cellulose based fabrics using Moringa oleifera extract in presence of silver nanoparticles. Cellulose. 2021;28(1):549–564.
  • Khanna PK, Singh N. In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys. 2007;104(2–3):367–372.
  • Ahmad R, Lah NAC, Singho ND, et al. FTIR studies on silver-poly (methylmethacrylate) nanocomposites via in-situ polymerization technique. Int J Electrochem Sci. 2012;7:5596–5603.
  • Choe S, Bang J, Kim E, et al. Synthesis and electrical resistivity of the monodisperse PMMA/Ag hybrid particles. Mater Chem Phys. 2012;134(2–3):814–820.
  • Božanić DK, Džunuzović E, Nedeljković JM, et al. Thermal and optical properties of silver–poly (methylmethacrylate) nanocomposites prepared by in-situ radical polymerization. Eur Polym J. 2010;46(2):137–144.
  • Džunuzović E, Kyritsis A, Logakis E, et al. Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites. Eur Polym J. 2011;47(8):1514–1525.
  • Chen B, Feng J, Li YY, et al. Hydrothermal preparation of hierarchical MoS2-reduced graphene oxide nanocomposites towards remarkable enhanced visible-light photocatalytic activity. Ceram Int. 2017;43(2):2384–2388.
  • Jawaid M, Saba N, Tahir PM. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers. 2014;6(8):2247–2273.
  • Ajayan PM, Gao W, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–849.
  • Hou X, Fang C, Li T, et al. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface. J Mater Sci Technol. 2021;84:182–190.
  • Lah NAC, Johan MR, Singho ND. Temperature-dependent properties of silver-poly (methylmethacrylate) nanocomposites synthesized by in-situ technique. Nanoscale Res Lett. 2014;9(1):42.
  • D, Mauro A, Farrugia C, Abela S, et al. Ag/ZnO/PMMA nanocomposites for an efficient water reuse. ACS Appl Bio Mater. 2020;3(7):4414–4426.
  • Buccolieri A, Carbone GG, Manno D, Serra A. A silver nanoparticle-poly(methyl methacrylate) based colorimetric sensor for the detection of hydrogen peroxide . Heliyon. 2019;5(11):e02887.
  • Germán VS, J, Carlos FA, L, Susana AT, et al. Antimicrobial poly (methyl methacrylate) with silver nanoparticles for dentistry: a systematic review. Appl Sci. 2020;10(11):4007.
  • Achilias DS, Ioannidou MD, Siddiqui MN, et al. Synthesis and characterization of poly (2-hydroxyethyl methacrylate)/silver hydrogel nanocomposites prepared via in situ radical polymerization. Thermochim Acta. 2016;643:53–64.
  • Ahmedov MA, Coşkun M, Soykan C, et al. Synthesis of phenacylmethacrylate: its characterization and polymerization. J Macromol Sci Part A: Pure Appl Chem. 1997;34(3):551–557.
  • Ahmedzade M, Coşkun M, Demirelli K, et al. Preparation and thermal degradation of poly (p-substituted phenacyl methacrylates). Polym Degrad Stab. 2001;72(1):69–74.
  • Bauer AW, Kirby WM, Sherris JC, et al. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–496.
  • Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74–89.e20.
  • Akhavan A, Mohammadkhani M, Mohammadi R, et al. In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene. Struct Chem. 2011;22:11–15.
  • Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12:788–800.
  • Sinha A, Sharma BP. Preparation of copper powder by glycerol process. Mater Res Bull. 2002;37(3):407–416.
  • Balaji SD, Basavaraja S, Lagashetty A, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull. 2008;43(5):1164–1170.
  • Alani F, Anderson W, Moo-Young M. Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol. 2012;28(3):1081–1086.
  • Djoković V, Mbhele ZH, Nedeljković JM, et al. Fabrication and characterization of silver–polyvinyl alcohol nanocomposites. Chem Mater. 2003;15(26):5019–5024.
  • Božanić DK, Džunuzović JV, Nedeljković J, et al. Silver/polystyrene nanocomposites: optical and thermal properties. Polym Compos. 2012;33(5):782–788.
  • Becker C, Krug H, Schmidt H. Tailoring of thermomechanical properties of thermoplastic nanocomposites by surface modification of nanoscale silica particles. MRS Online Proc Library. 1996;435:237–242.
  • Apple T, Ash BJ, Benicewicz BC, et al. Investigation into the thermal and mechanical behavior of PMMA/alumina nanocomposites. MRS Online Proc Library. 2000;661:1–6.
  • Ash BJ, Schadler LS, Siegel RW. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett. 2002;55(1–2):83–87.
  • Shen YY, Yan XL, Ni SQ, et al. Ag-CsPbBr3 quantum dots/PMMA composite film for tunable white light emitting diodes. Mater Lett. 2021;304:130691.
  • Cochez M, Ferriol M, Laachachi A, et al. The catalytic role of oxide in the thermooxidative degradation of poly (methyl methacrylate)–TiO2 nanocomposites. Polym Degrad Stab. 2008;93(6):1131–1137.
  • Džunuzović E, Jeremić K, Nedeljković JM. In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. Eur Polym J. 2007;43(9):3719–3726.
  • Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4(5):323–328.
  • Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–1706.
  • Avakian P, Kampert WG, Starkweather HW Jr. Chapter 4, Dielectric analysis of polymers. In: Cheng SZD, editor. Applications to polymers and plastics handbook of thermal analysis and calorimetry. Vol. 3. Elsevier Science BV; 2002. p. 147–165.
  • Gerasimov TG, Harmon JP, Mohomed K, et al. Broad spectrum analysis of the dielectric properties of poly (2-hydroxyethyl methacrylate). Polymer. 2005;46(11):3847–3855.
  • Arof AK, Ramesh S, Yahaya AH. Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion. 2002;152:291–294.
  • Bhargav PB, Rao VN, Sarada BA, et al. Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci Part A. 2009;47(2):131–137.
  • Ilangovan P, Kottur AB, Sakvai MS. Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties. Mater Chem Phys. 2017;193:203–211.
  • Yakuphanoglu F, Erol I. A novel organic semiconducting material: 2-(3-mesityl-3-methylcyclobutyl)-2-keto-ethyl methacrylate (MCKEMA). Physica B: Condens Matter. 2004;352(1–4):378–382.
  • Peymanfar R, Javanshir S, R, Naimi-Jama M, et al. Morphology and medium influence on microwave characteristics of nanostructures: a review. J Mater Sci. 2021;56(31):17457–17477.
  • Peymanfar R, Ahmadi A, Selseleh-Zakerin Ghaffari A, et al. Electromagnetic and optical characteristics of wrinkled Ni nanostructure coated on carbon microspheres. Chem Eng J. 2021;405:126985.
  • Peymanfa R, Fazlalizadeh F. Fabrication of expanded carbon microspheres/ZnAl2O4 nanocomposite and investigation of its microwave, magnetic, and optical performance. J Alloys Compd. 2021;854:157273.
  • Vanlalveni C, Lallianrawna S, Biswas A, et al. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 2021;11(5):2804–2837.
  • Gopinath V, Mubarak Ali D, Priyadarshini S, et al. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces. 2012;96:69–74.
  • Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182.
  • Yu S. E, Vidic RD, Stout JE, et al. Inactivation of Mycobacterium avium by copper and silver ions. Water Res. 1998;32(7):1997–2000.
  • Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668.
  • Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.