519
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in nanotechnology based combination drug therapy for skin cancer

, , , & ORCID Icon
Pages 1435-1468 | Received 10 Jan 2022, Accepted 14 Mar 2022, Published online: 24 Mar 2022

References

  • Leider M. On the weight of the skin. J Invest Dermatol. 1949;12(3):187–191.
  • Dasari S, Yedjou CG, Brodell RT, et al. Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer. Nanotechnol Rev. 2020;9(1):1500–1521.
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014;39(2):268–307.
  • Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–7150.
  • Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumour-targeted drug and gene delivery. Drug Discov Today. 2015a;20(5):536–547.
  • Kesharwani P, Banerjee S, Gupta U, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today. 2015b;18(10):565–572.
  • Kesharwani P, Tekade RK, Gajbhiye V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine. 2011;7(3):295–304.
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 2015c;32(4):1438–1450.
  • Kesharwani P, Choudhury H, Meher JG, et al. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog Mater Sci. 2019;103:484–508.
  • Wei X, Jianhong L, Davoudi Z, et al. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar Drugs. 2018;16(11):439–456.
  • Liao J, Peng H, Wei X, et al. A bio-responsive 6-mercaptopurine/doxorubicin based "click chemistry" polymeric prodrug for cancer therapy. Mater Sci Eng C. 2020;108(1):110461–110473.
  • Liao J, Peng H, Liu C, et al. Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. Mater Sci Eng C Mater Biol Appl. 2021;118(1):111527–111540.
  • Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J. Control. Release. 2020;327:235–265.
  • Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, et al. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev. 2020;153:109–136.
  • Chadar R, Sheikh A, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int. J. Pharm. 2021;605:120835.
  • Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release. 2021;337:589–611.
  • Tripathi PK, Gorain B, Choudhury H, et al. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon. 2019;5(3):4: e01343. *
  • Ostrowski SM, Fisher DE. Biology of melanoma. Hematol Oncol Clin North Am. 2021;35(1):29–56.
  • Zhang T, Dutton-Regester K, Brown KM, et al. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res. 2016;29(3):266–283.
  • Didona D, Paolino G, Bottoni U, et al. Non melanoma skin cancer pathogenesis overview. Biomedicines. 2018;6(1):6.
  • Apalla Z, Nashan D, Weller RB, et al. Skin cancer: epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb). 2017;7(Suppl 1):5–19.
  • Cameron MC, Lee E, Hibler BP, et al. Basal cell carcinoma: epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol. 2019;80(2):303–317.
  • Cives M, Mannavola F, Lospalluti L, et al. Non-melanoma skin cancers: biological and clinical features. Int J Mol Sci. 2020;21:1–24.
  • Green AC, Olsen CM. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177(2):373–381.
  • Kabir S, Schmults CD, Ruiz ES. A review of cutaneous squamous cell carcinoma epidemiology, diagnosis, and management. Int J Cancer Manag. 2018;11(1):e60846.
  • Kallini JR, Hamed N, Khachemoune A. Squamous cell carcinoma of the skin: epidemiology, classification, management, and novel trends. Int J Dermatol. 2015;54(2):130–140.
  • Kauvar A, Cronin T, Roenigk R, et al. Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methods. Dermatol Surg. 2015;41(5):550–571.
  • Aung P, Nagarajan P, Prieto V. Regression in primary cutaneous melanoma: etiopathogenesis and clinical significance. Lab Invest. 2017;97(6):657–668.
  • Seiverling EV, Ahrns HT, Bacik LC, et al. Biopsies for skin cancer detection: dispelling the myths. J Fam Pract. 2018;67(5):270–274.
  • Narayanamurthy V, Padmapriya P, Noorasafrin A, et al. Skin cancer detection using non-invasive techniques. RSC Adv. 2018;8(49):28095–28130.
  • Skandalis SS, Gialeli C, Theocharis ADT, et al. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res. 2014;123:277–317.
  • Kumar A, Chen F, Mozhi A, et al. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale. 2013;5(18):8307–8325.
  • Liu Q, Xu N, Liu L, et al. Dacarbazine-loaded hollow mesoporous silica nanoparticles grafted with folic acid for enhancing antimetastatic melanoma response. ACS Appl Mater Interfaces. 2017;9(26):21673–21687.
  • Zhou M, Li X, Li Y, et al. Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy . Drug Deliv. 2017;24(1):1230–1242.
  • Jiang G, Li R, Jianqin T, et al. Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells. Oncol Rep. 2017;37(2):995–1001.
  • Kamaly N, Xiao Z, Valencia PM, et al. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.
  • Tang S, Davoudi Z, Wang G, et al. Soft materials as biological and artificial membranes. Chem Soc Rev. 2021;50(22):12679–12701.
  • Grimaldi N, Andrade F, Segovia N, et al. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev. 2016;45(23):6520–6545.
  • Sala M, Diab R, Elaissari A, et al. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018;535(1-2):1–17.
  • Vyas A, Das SK, Singh D, et al. Recent nanoparticulate approaches of drug delivery for skin cancer. Trends Appl Sci Res. 2012;7(8):620–635.
  • Olusanya TOB, Ahmad RRH, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907–917.
  • Mirzavi F, Barati M, Soleimani A, et al. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm. 2021;599(120413):120413.
  • Touitou E. Compositions for applying active substances to or through the skin. United States 1996. patent US 5540934 A.
  • Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech. 2007;8(4):213.
  • Touitou E, Dayan N, Bergelson L, et al. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–418.
  • Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomedicine. 2013;8:3171–3186.
  • Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv. 2014;11(1):45–59.
  • Pandey V, Golhani D, Shukla R. Ethosomes: versatile vesicular carriers for efficient transdermal delivery of therapeutic agents. Drug Deliv. 2015;22(8):988–1002.
  • Paiva-Santos AC, Silva AL, Catarina G, et al. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res. 2021;38(6):947–970.
  • Yeo PL, Lim CL, Chye SM, et al. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed (Res Rev News). 2018;11(4):301–314.
  • Seleci DA, Seleci M, Walter J-G, et al. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1–13.
  • Mahale NB, Thakkar PD, Mali RG, et al. Niosomes: novel sustained release nonionic stable vesicular systems-an overview. Adv Colloid Interface Sci. 2012;183-184:46–54.
  • Paolino D, Cosco D, Muzzalupo R, et al. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm. 2008;353(1-2):233–242.
  • Solanki D, Kushwah L, Motiwale M, et al. Transferosomes-a review. World J Pharm Pharm Sci. 2016;5:435–449.
  • Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp. 2017;8(1):1325708.
  • Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777–26791.
  • Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C Mater Biol Appl. 2016;68:982–994.
  • Ekambaram P, Abdul A, Sathali H, et al. Solid lipid nanoparticles: a review. Sci Revs Chem Commun. 2012;2:80–102.
  • Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005;27(2):127–144.
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system indian. Indian J Pharm Sci. 2009;71(4):349–358.
  • Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997.
  • Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drug. Int J Pharm. 2002;242(1-2):121–128.
  • Radtke M, Muller RH. Comparison of structural properties of solid lipid nanoparticles (SLN) versus other lipid particles. Proc Int Symp Control Rel Bioact Mater. 2000;27:309–310.
  • Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie. 2006;61(5):375–386.
  • Purohit DK, Nandgude TD, Poddar SS. Nano-lipid carriers for topical application: current scenario. Asian J Pharm. 2016;9:1–9.
  • Zauner W, Farrow NA, Haines AMR. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001;71(1):39–51.
  • Dubey N, Malviya, N, Majumdar. A. Nanostructure lipid carriers: a promising tool for the drug delivery in the treatment of skin cancer. Asian J Pharm Clin Res. 2019;12:15–26.
  • El-Bahr SM. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1. Phytother Res. 2015;29(1):134–140.
  • Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS Pharm SciTech. 2019;20:121.
  • Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov. 2019;18(4):273–294.
  • Elzoghby AO, Hemasa AL, Freag MS. Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release. 2016;243:303–322.
  • Zhang L, Gu FX, Chan JM, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–769.
  • Zhang L, Zhang N. How nanotechnology can enhance docetaxel therapy. Int J Nanomedicine. 2013;8:2927–2941.
  • Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem. 2007;2(9):1268–1271.
  • Mehan N, Kumar M, Bhatt S, et al. Self-Assembly polymeric nano micelles for the futuristic treatment of skin cancer and phototoxicity: Therapeutic and clinical advancement. Crit Rev Ther Drug Carrier Syst. 2022;39(2):79–95.
  • Nazir S, Hussain T, Ayub A, et al. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine. 2014;10(1):19–34.
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–1659.
  • Deng S, Gigliobianco MR, Censi R, et al. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10(5):847–836.
  • Pohlmann AR, Weiss V, Mertins O, et al. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: Development, stability evaluation and nanostructure models. Eur J Pharm Sci. 2002;16(4-5):305–312.
  • Gazzi RP, Frank LA, Onzi G, et al. New pectin-based hydrogel containing imiquimod-loaded polymeric nanocapsules for melanoma treatment. Drug Deliv Transl Res. 2020;10(6):1829–1840.
  • Mittal P, Saharan A, Verma R, et al. Dendrimers: a new race of pharmaceutical nanocarriers. Biomed Res Int. 2021;2021:8844030–8844012.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–1822.
  • Singh R, Hildgen P. Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. Bioconjug Chem. 2006;17(1):29–41.
  • Bei D, Meng J, Youan BTC. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond). 2010;5(9):1385–1399.
  • Jain PK, Eustis S, El-Sayed MA. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B. 2006;110(37):18243–18253.
  • Albrecht R. Immunocytochemistry: a practical approach (Edited by E. J. Beesley), vol. 2, chapter 7. Oxford (UK): Oxford University Press, 1993.
  • Bagheri S, Yasemi M, Safaie-Qamsari E, et al. Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup1):462–471.
  • Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. IJMS. 2019;20(4):865.
  • Suresh AK, Pelletier DA, Wang W, et al. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir. 2012;28(5):2727–2735.
  • Huang H, Barua S, Sharma G, et al. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155(3):344–357.
  • Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;44(10):853–862.
  • Chee CF, Leo BF, Lai CW. Superparamagnetic iron oxide nanoparticles for drug delivery. In Inamuddin I., Asiri A.M., Mohammad A., editors. Applications of nanocomposite materials in drug delivery. 1st ed. Woodhead Publishing; Cambridge (UK), 2018. pp 861–903.
  • Raviraj V, Pham BTT, Kim BJ, et al. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nano. 2021;12(1):1–15.
  • Farjadian JF, Roointan A, Mohammadi-Samani S, et al. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng J. 2019;359:684–705.
  • Shi Z, Zhou Y, Fan T, et al. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Materials in Medicine. 2020;1:32–47.
  • Marinheiro D, Ferreira B, Oskoei P, et al. Encapsulation and enhanced release of resveratrol from mesoporous silica nanoparticles for melanoma therapy. Materials. 2021;14(6):1382.
  • Kang Z, Lee S-T. Carbon dots: advances in nanocarbon applications. Nanoscale. 2019;11(41):19214–19224.
  • Maiti D, Tong X, Mou X, et al. Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol. 2019;9:1–16.
  • Polizu S, Savadogo O, Poulin P, et al. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol. 2006;6(7):1883–1904.
  • Akhtar N, Pathak K. Carbon nanotubes in the treatment of skin cancers: safety and toxic ological aspects. Pharm Nanotechnol. 2017;5:95–110.
  • Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol. 2019;17(1):24.
  • Loukanov AR, Gagov HS, Mishonova MY, et al. Biocompatible carbon nanodots for functional imaging and cancer therapy: carbon nanodots for imaging and cancer therapy. Int J Biomed Eng Technol. 2016;7:31–45.
  • Zeng Q, Shao D, He X, et al. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B. 2016;4(30):5119–5126.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.
  • Liu JZ, Dong J, Zhang T, et al. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018a;286:64–73.
  • Oliveira SF, Bisker G, Bakh NA, et al. Protein functionalized carbon nanomaterials for biomedical applications. Carbon. 2015;95:767–779.
  • Madni A, Tahir N, Rehman M, et al. Hybrid nano-carriers for potential drug delivery. Hybrid nano-carriers for potential drug delivery. Adv Technol Deliver Therapeut. 2017;53–87.
  • Caddeo C, Nacher A, Vassallo A, et al. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm. 2016;513(1-2):153–163.
  • Jose A, Labala S, Venuganti VVK. Co-Delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target. 2017;25(4):330–341.
  • Singh S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int J Nanomedicine. 2018;13(T-NANO 2014 Abstracts):11–13.
  • Duan X, Mu M, Yan J, et al. Co-delivery of Aurora-a inhibitor XY-4 and bcl-xl siRNA enhances antitumor efficacy for melanoma therapy. Int J Nanomedicine. 2018;13:1443–1456.
  • Mishra H, Mishra PK, Iqbal Z, et al. Co-delivery of eugenol and dacarbazine by hyaluronic acid-coated liposomes for targeted inhibition of survivin in treatment of resistant metastatic melanoma. Pharmaceutics. 2019;11(4):163.
  • Chen L, Alrbyawi H, Poudel I, et al. Co-delivery of doxorubicin and ceramide in a liposomal formulation enhances cytotoxicity in murine B16BL6 melanoma cell lines. AAPS Pharm Sci Tech. 2019;20:1–10.
  • Wang T, Feng L, Yang S, et al. Ceramide lipid-based nanosuspension for enhanced delivery of docetaxel with synergistic antitumor efficiency. Drug Deliv. 2017;24(1):800–810.
  • Carvalho VFM, Migotto A, Giacone DV, et al. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cytotoxic effects in 2D and 3D models. Eur J Pharm Sci. 2017;109:131–143.
  • Lin H, Lin L, Choi Y, et al. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma. Int J Pharm. 2020;581:119278.
  • Imran M, Iqubal MK, Imtiyaz K, et al. Topical nanostructured lipid carrier gel of quercetin and resveratrol: formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm. 2020;587:119705.
  • Tavakoli F, Jahanban-Esfahlan R, Seidi K, et al. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif Cells Nanomed Biotechnol. 2018;46(sup2):75–86.
  • Yin Y, Hu Q, Xu C, et al. Co-delivery of doxorubicin and interferon-γ by thermosensitive nanoparticles for cancer immunochemotherapy. Mol Pharm. 2018;15(9):4161–4172.
  • Zhao L, Zhang X, Wang X, et al. Recent advances in selective photothermal therapy of tumor. J Nanobiotechnol. 2021;19(1):1–15.
  • Xia C, Yin S, Xu S, et al. Low molecular weight heparin-coated and dendrimer-based core-shell nanoplatform with enhanced immune activation and multiple anti-metastatic effects for melanoma treatment. Theranostics. 2019;9(2):337–354.
  • Lu Y, Yang Y, Gu Z, et al. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and co-delivery platform for enhanced cancer immunotherapy. Biomaterials. 2018;175:82–92.
  • Labala S, Mandapalli PK, Kurumaddali A, et al. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharmaceutics. 2015;12(3):878–888.
  • Preet S, Pandey SK, Kaur K, et al. Gold nanoparticles assisted co-delivery of nisin and doxorubicin against murine skin cancer. J Drug Deliv Sci Technol. 2019;53:101147.
  • Hesabi M, Hesabi M. The interaction between carbon nanotube and skin anti-cancer drugs: a DFT and NBO approach. J. Nanostructure Chem. 2013;3:1–6.
  • Li H, Li Y, Wang X, et al. Rational design of polymeric hybrid micelles to overcome lymphatic and intracellular delivery barriers in cancer immunotherapy. Theranostics. 2017;7(18):4383–4398.
  • Wang S, Xin J, Zhang L, et al. Cantharidin-encapsulated thermal-sensitive liposomes coated with gold nanoparticles for enhanced photothermal therapy on A431 cells . Int J Nanomedicine. 2018;13:2143–2160.
  • Rao J, Mei L, Liu J, et al. Size-adjustable micelles co-loaded with a chemotherapeutic agent and an autophagy inhibitor for enhancing cancer treatment via increased tumor retention. Acta Biomater. 2019;89:300–312.
  • Zhao Y, Song Q, Yin Y, et al. Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. J Control Release. 2018;269:322–336.
  • Beack S, Kong WH, Jung HS, et al. Photodynamic therapy of melanoma skin cancer using carbon dot - chlorin e6 - hyaluronate conjugate. Acta Biomater. 2015;26:295–305.
  • Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm. 2017;518(1–2):228–241.
  • Rady M, Gomaa I, Afifi N, et al. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int J Pharm. 2018;548(1):480–490.
  • Sebak AA, Gomaa IEO, ElMeshad AN, et al. ElMeshad an, et al targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma. Photodiagnosis Photodyn Ther. 2018;23:181–189.
  • Bazylińska U, Kulbacka J, Schmidt J, et al. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. J Colloid Interface Sci. 2018;522:163–173.
  • Singh SP, Alvi SB, Pemmaraju DB, et al. NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. Int J Biol Macromol. 2018;110:375–382.
  • Rahimi-Moghaddam F, Azarpira N, Sattarahmady N. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation. Lasers Med Sci. 2018;33(8):1769–1779.
  • Zhou B, Song J, Wang M, et al. BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy. Nanoscale. 2018;10(46):21640–21647.
  • Zang Y, Wei Y, Shi Y, et al. Chemo/photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-Gold Nanoplatform. Small. 2016;12(6):756–769.
  • Venuganti VVK, Saraswathy M, Dwivedi C, et al. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale. 2015;7(9):3903–3914.
  • Labala S, Jose A, Chawla SR, et al. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int J Pharm. 2017;525(2):407–417.
  • Petrilli R, Eloy JO, Saggioro FP, et al. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J Control Release. 2018;283:151–162.
  • Liu M, Khan AR, Ji J, et al. Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. J Control Release. 2018b;290:150–164.
  • Prasad C, Banerjee R. Ultrasound triggered spatiotemporal delivery of topotecan and curcumin as combination therapy for cancer. J Pharmacol Exp Ther. 2019;370(3):876–893.
  • Hao Y, Li W, Zhou XL, et al. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13(12):1581–1597.
  • Tham HP, Xu K, Lim WQ, et al. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano. 2018;12(12):11936–11948.
  • Lan X, She J, Lin DA, et al. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl Mater Interfaces. 2018;10(39):33060–33069.
  • Ahmed KS, Shan X, Mao J, et al. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C Mater Biol Appl. 2019;99:1448–1458.
  • Wang Y, Zhang L, Xu Z, et al. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol Ther. 2018;26(2):420–434.
  • Byrne JD, Yeh JJ, DeSimone JM. Use of iontophoresis for the treatment of cancer. J Control Release. 2018;284:144–151.
  • Jose A, Labala S, Ninave KM, et al. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS Pharm Sci Tech. 2018;19(1):166–175.
  • Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm. 2019;555(1):49–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.