295
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells

, , , , , , , & show all
Pages 1469-1493 | Received 02 Jan 2022, Accepted 20 Mar 2022, Published online: 30 Mar 2022

References

  • Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res. 1999;360:71–86.
  • Wani TU, Khan RS, Rather AH, et al. Nanofiber-mediated stem cell osteogenesis: prospects in bone tissue regeneration. In Sheikh FA, editor. Engineering materials for stem cell regeneration. Singapore: Springer Singapore; 2021. p. 47–67.
  • Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002;292(1):1–7.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
  • Huang Z-M, Zhang Y-Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–2253.
  • Lin W, Chen M, Qu T, et al. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2020;108(4):1311–1321.
  • Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28(4):589–603.
  • Leeb C, Jurga M, McGuckin C, et al. New perspectives in stem cell research: beyond embryonic stem cells. Cell Prolif. 2011;44:9–14.
  • Swijnenburg R-J, Schrepfer S, Govaert JA, et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA. 2008;105(35):12991–12996.
  • Liu G, David BT, Trawczynski M, et al. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep. 2020;16(1):3–32.
  • Fibbe WE, Nauta AJ, Roelofs H. Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci. 2007;1106(1):272–278.
  • Ardeshirylajimi A, Soleimani M, Hosseinkhani S, et al. A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells. Cell J. 2014;16(3):235–244.
  • Egusa H, Kayashima H, Miura J, et al. Comparative analysis of Mouse-Induced pluripotent stem cells and mesenchymal stem cells during osteogenic differentiation in vitro. Stem Cells Dev. 2014;23(18):2156–2169.
  • Grskovic M, Javaherian A, Strulovici B, et al. Induced pluripotent stem cells-opportunities for disease modelling and drug discovery. Nat Rev Drug Discov. 2011;10(12):915–929.
  • Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20(7):377–388.
  • Malik N, Rao MS. A review of the methods for human iPSC derivation. In: Pluripotent stem cells. Springer; 2013. p. 23–33.
  • Smith AS, Macadangdang J, Leung W, et al. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv. 2017;35(1):77–94.
  • Khan RS, Wani TU, Rather AH, et al. Using nanofiber scaffolds for the differentiation of induced pluripotent stem cells into cardiomyocytes: the latest approaches in tissue engineering. In Sheikh FA, editor. Engineering materials for stem cell regeneration. Singapore: Springer Singapore; 2021. p. 69–102.
  • Enderami SE, Kehtari M, Abazari MF, et al. Generation of insulin-producing cells from human induced pluripotent stem cells on PLLA/PVA nanofiber scaffold. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1062–1069.
  • Mahboudi H, Sadat Hosseini F, Kehtari M, et al. The effect of PLLA/PVA nanofibrous scaffold on the chondrogenesis of human induced pluripotent stem cells. Int J Polym Mater Polym Biomater. 2020;69(10):669–677.
  • Tahmasebi A, Enderami SE, Saburi E, et al. Micro-RNA-incorporated electrospun nanofibers improve osteogenic differentiation of human-induced pluripotent stem cells. J Biomed Mater Res A. 2020;108(2):377–386.
  • Paull D, Sevilla A, Zhou H, et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods. 2015;12(9):885–892.
  • D'Antonio M, Woodruff G, Nathanson JL, et al. High-throughput and cost-effective characterization of induced pluripotent stem cells. Stem Cell Rep. 2017;8(4):1101–1111.
  • Bastami F, Nazeman P, Moslemi H, et al. Induced pluripotent stem cells as a new getaway for bone tissue engineering: a systematic review. Cell Prolif. 2017;50(2):e12321.
  • Rana D, Kumar S, Webster TJ, et al. Impact of induced pluripotent stem cells in bone repair and regeneration. Curr Osteoporos Rep. 2019;17(4):226–234.
  • Sheyn D, Ben-David S, Shapiro G, et al. Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem Cells Transl Med. 2016;5(11):1447–1460.
  • Sanchooli T, Norouzian M, Ardeshirylajimi A, et al. Adipose derived stem cells conditioned media in combination with bioceramic-collagen scaffolds improved calvarial bone healing in hypothyroid rats. Iran Red Crescent Med J. 2017;19(5).
  • del Carmen Ortuño Costela M, García López M, Cerrada V, et al. iPSCs: a powerful tool for skeletal muscle tissue engineering. J Cell Mol Med. 2019;23(6):3784–3794.
  • Gähwiler EK, Motta SE, Martin M, et al. Human iPSCs and genome editing technologies for precision cardiovascular tissue engineering. Front Cell Dev Biol. 2021;9:639699–639621.
  • Nemati M, Ranjbar Omrani G, Ebrahimi B, et al. Efficiency of stem cell (SC) differentiation into Insulin-Producing cells for treating diabetes: a systematic review. Stem Cells Int. 2021;2021:6652915–6652919.
  • Fliefel R, Ehrenfeld M, Otto S. Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: a systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med. 2018;12(7):1780–1797.
  • Hashemi J, Barati G, Enderami SE, et al. Osteogenic differentiation of induced pluripotent stem cells on electrospun nanofibers: a review of literature. Mater Today Commun. 2020;25:101561.
  • Sheikh FA. Engineering materials for stem cell regeneration. Springer; 2021. p. 29–162.
  • Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117:100721.
  • Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):1413–1433.
  • Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30(25):4094–4103.
  • Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Mater Today: Proc. 2017;4(2):898–907.
  • Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed. 2019;30(14):1308–1355.
  • Wang S, Hu F, Li J, et al. Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomedicine. 2018;14(7):2505–2520.
  • Xue J, Xie J, Liu W, et al. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50(8):1976–1987.
  • Yang C, Shao Q, Han Y, et al. Fibers by electrospinning and their emerging applications in bone tissue engineering. Applied Sciences. 2021;11(19):9082.
  • Yilmaz EN, Zeugolis DI. Electrospun polymers in cartilage engineering—state of play. Front Bioeng Biotechnol. 2020;8:77.
  • Grant R, Hallett J, Forbes S, et al. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep. 2019;9(1):6293.
  • Asghari F, Samiei M, Adibkia K, et al. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol. 2017;45(2):185–192.
  • Ju J, Peng X, Huang K, et al. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer. 2019;180:121707.
  • Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5(8):584–603.
  • Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofac Res. 2020;10(1):381–388.
  • Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials. 1991;12(3):292–304.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Delivery Rev. 2012;64:72–82.
  • Kang R, Luo Y, Zou L, et al. Osteogenesis of human induced pluripotent stem cells derived mesenchymal stem cells on hydroxyapatite contained nanofibers. RSC Adv. 2014;4(11):5734–5739.
  • Ardeshirylajimi A, Khojasteh A. Synergism of electrospun nanofibers and pulsed electromagnetic field on osteogenic differentiation of induced pluripotent stem cells. ASAIO J. 2018;64(2):253–260.
  • Soleimanifar F, Hosseini FS, Atabati H, et al. Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. J Cell Physiol. 2019;234(7):10315–10323.
  • Deng Y, Yang Y, Wei S. Peptide-decorated nanofibrous niche augments in vitro directed osteogenic conversion of human pluripotent stem cells. Biomacromolecules. 2017;18(2):587–598.
  • Simamora P, Chern W. Poly-l-lactic acid: an overview. J Drugs Dermatol. 2006;5(5):436–440.
  • Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 1982;23(11):1587–1593.
  • Walton M, Cotton NJ. Long-term in vivo degradation of poly-l-lactide (PLLA) in bone. J Biomater Appl. 2007;21(4):395–411.
  • D'Angelo F, Armentano I, Cacciotti I, et al. Tuning multi/pluri-potent stem cell fate by electrospun poly(l-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules. 2012;13(5):1350–1360.
  • Hosseini FS, Soleimanifar F, Khojasteh A, et al. Promoting osteogenic differentiation of human-induced pluripotent stem cells by releasing Wnt/β-catenin signaling activator from the nanofibers. J Cell Biochem. 2019;120(4):6339–6346.
  • Hu M, Deng C, Gu X, et al. Manipulating the strength–toughness balance of poly(l-lactide) (PLLA) via introducing ductile poly(ε-caprolactone) (PCL) and strong shear flow. Ind Eng Chem Res. 2020;59(2):1000–1009.
  • Xu R, Zhang Z, Toftdal MS, et al. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release. 2019;301:129–139.
  • Wu K, Yang W, Liu X, et al. Electrospun porous polyethersulfone (PES) fiber mats with high bilirubin adsorption capacity. Mater Lett. 2016;185:252–255.
  • Rahimpour A, Jahanshahi M, Khalili S, et al. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination. 2012;286:99–107.
  • Shi Q, Su Y, Zhu S, et al. A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. J Membr Sci. 2007;303(1–2):204–212.
  • Wang H, Yang L, Zhao X, et al. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone. Chin J Chem Eng. 2009;17(2):324–329.
  • Ardeshirylajimi A, Hosseinkhani S, Parivar K, et al. Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Mol Biol Rep. 2013;40(7):4287–4294.
  • Ardeshirylajimi A, Dinarvand P, Seyedjafari E, et al. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res. 2013;354(3):849–860.
  • Giwa A, Hasan SW. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Sep Purif Technol. 2020;241:116735.
  • Rahimpour A, Madaeni SS, Mehdipour-Ataei S. Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. J Membr Sci. 2008;311(1–2):349–359.
  • Rahimpour A, Madaeni SS. Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci. 2007;305(1–2):299–312.
  • Liu ZH, Maréchal P, Jérôme R. Blends of poly (vinylidene fluoride) with polyamide 6: interfacial adhesion, morphology and mechanical properties. Polymer. 1998;39(10):1779–1785.
  • Xing J, Ni Q-Q, Deng B, et al. Morphology and properties of polyphenylene sulfide (PPS)/polyvinylidene fluoride (PVDF) polymer alloys by melt blending. Compos Sci Technol. 2016;134:184–190.
  • Xin Y, Zhu J, Sun H, et al. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning. Ferroelectrics. 2018;526(1):140–151.
  • Mokhtari F, Latifi M, Shamshirsaz M. Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. J Textile Inst. 2016. 2015;107(8):1–55.
  • Mirzaei A, Moghadam AS, Abazari MF, et al. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. J Cell Physiol. 2019;234(10):17854–17862.
  • Saburi E, Islami M, Hosseinzadeh S, et al. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on graphene oxide-modified nanofibers. Gene. 2019;696:72–79.
  • Mirzaei A, Saburi E, Enderami SE, et al. Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. Artif Cells Nanomed Biotechnol. 2019;47(1):3058–3066.
  • Abazari MF, Soleimanifar F, Enderami SE, et al. Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation. J Cell Biochem. 2019;120(10):16750–16759.
  • Azadian E, Arjmand B, Ardeshirylajimi A, et al. Polyvinyl alcohol modified polyvinylidene fluoride‐graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem. 2020;121(5–6):3185–3196.
  • Abazari MF, Soleimanifar F, Amini Faskhodi M, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet-rich plasma composite nanofibers. J Cell Physiol. 2020;235(2):1155–1164.
  • Abazari MF, Hosseini Z, Karizi SZ, et al. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene. 2020;740:144534.
  • Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021;127:56–79.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659.
  • Li W, Yang X, Feng S, et al. The fabrication of biomineralized fiber-aligned PLGA scaffolds and their effect on enhancing osteogenic differentiation of UCMSC cells. J Mater Sci: Mater Med. 2018;29(8):1–13.
  • Abazari MF, Zare Karizi S, Kohandani M, et al. MicroRNA-2861 and nanofibrous scaffold synergistically promote human induced pluripotent stem cells osteogenic differentiation. Polym Adv Technol. 2020;31(10):2259–2269.
  • Morent R, De Geyter N, Desmet T, et al. Plasma surface modification of biodegradable polymers: a review. Plasma Process Polym. 2011;8(3):171–190.
  • Tahmasebi A, Moghadam AS, Enderami SE, et al. Aloe vera-derived gel-blended poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous scaffold for bone tissue engineering. ASAIO J. 2020;66(8):966–973.
  • Halabian R, Salimi A, Moridi K, et al. Composite nanoscaffolds modified with bio-ceramic nanoparticles (Zn2SiO4) prompted osteogenic differentiation of human induced pluripotent stem cells. Int J Mol Cell Med. 2019;8(1):24–38.
  • Jacobs T, Declercq H, De Geyter N, et al. Improved cell adhesion to flat and porous plasma-treated poly-ε-caprolactone samples. Surf Coat Technol. 2013;232:447–455.
  • Recek N, Mozetic M, Jaganjac M, et al. Adsorption of proteins and cell adhesion to plasma treated polymer substrates. Int J Polym Mater Polym Biomater. 2014;63(13):685–691.
  • Lai J, Sunderland B, Xue J, et al. Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl Surf Sci. 2006;252(10):3375–3379.
  • Kim KS, Lee KH, Cho K, et al. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J Membr Sci. 2002;199(1–2):135–145.
  • Abazari MF, Nejati F, Nasiri N, et al. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene. 2019;720:144096.
  • Diaz-Gomez L, Alvarez-Lorenzo C, Concheiro A, et al. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Mater Sci Eng C Mater Biol Appl. 2014;40:180–188.
  • Bertoncelj V, Pelipenko J, Kristl J, et al. Development and bioevaluation of nanofibers with blood-derived growth factors for dermal wound healing. Eur J Pharm Biopharm. 2014;88(1):64–74.
  • Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62(4):489–496.
  • Vallet-Regí M. Bioceramics: from bone substitutes to nanoparticles for drug delivery. Pure Appl Chem. 2019;91(4):687–706.
  • Lu H, Kawazoe N, Tateishi T, et al. In vitro proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi2O7) and {beta}-TCP ceramics. J Biomater Appl. 2010;25(1):39–56.
  • Kankilic B, Köse S, Korkusuz P, et al. Mesenchymal stem cells and nano-bioceramics for bone regeneration. Curr Stem Cell Res Ther. 2016;11(6):487–493.
  • Vallet Regí M, Ruiz, Hernández E. Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater. 2011;23(44):5177–5218.
  • Amiri B, Ghollasi M, Shahrousvand M, et al. Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles. Differentiation. 2016;92(4):148–158.
  • Wang S, Castro R, An X, et al. Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem. 2012;22(44):23357–23367.
  • Huang Y, Jin X, Zhang X, et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials. 2009;30(28):5041–5048.
  • Wang Z, Zhao Y, Luo Y, et al. Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Adv. 2015;5(4):2383–2391.
  • Venkatesan J, Kim S-K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol. 2014;10(10):3124–3140.
  • Qin J, Yang D, Maher S, et al. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J Mater Chem B. 2018;6(19):3136–3144.
  • Pepla E, Besharat LK, Palaia G, et al. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol. 2014;5(3):108–114.
  • Ohgushi H, Dohi Y, Tamai S, et al. Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mater Res. 1993;27(11):1401–1407.
  • Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite—past, present, and future in bone regeneration. Bone Tissue Regen Insights. 2016;7:BTRI.S36138.
  • Holt BD, Wright ZM, Arnold AM, et al. Graphene oxide as a scaffold for bone regeneration. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2017;9(3):e1437.
  • Xie Y, Li H, Ding C, et al. Effects of graphene plates' adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating. Int J Nanomed. 2015;10:3855–3863.
  • Yan Y, Zhang X, Mao H, et al. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications. Appl Surf Sci. 2015;329:76–82.
  • Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol. 2015;35(4):367–374.
  • Kumar S, Raj S, Sarkar K, et al. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale. 2016;8(12):6820–6836.
  • Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7(11):6331–6339.
  • Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(l-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A. 2015;103(4):1424–1435.
  • Santos C, Piedade C, Uggowitzer P, et al. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants. Appl Surf Sci. 2015;345:387–393.
  • Zeng Y, Pei X, Yang S, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf Coat Technol. 2016;286:72–79.
  • Wang JK, Xiong GM, Zhu M, et al. Polymer-enriched 3D graphene foams for biomedical applications. ACS Appl Mater Interfaces. 2015;7(15):8275–8283.
  • Hassanian SM, Ardeshirylajimi A, Dinarvand P, et al. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β-catenin signaling in endothelial cells. J Thromb Haemost. 2016;14(11):2261–2273.
  • Hanada K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res. 1997;12(10):1606–1614.
  • Lisignoli G, Fini M, Giavaresi G, et al. Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials. 2002;23(4):1043–1051.
  • Jiang X, Zou S, Ye B, et al. bFGF-modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010;46(4):1156–1161.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.
  • Sera SR, zur Nieden NI. microRNA regulation of skeletal development. Curr Osteoporos Rep. 2017;15(4):353–366.
  • Gámez B, Rodriguez-Carballo E, Ventura F. MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol. 2014;52(3):R179–R97.
  • Diao HJ, Low WC, Milbreta U, et al. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Controlled Release. 2015;208:85–92.
  • Zhou F, Jia X, Yang Y, et al. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater. 2016;43:303–313.
  • Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 2012;21(13):2531–2540.
  • Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–284.
  • Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep. 2015;48(6):319–323.
  • Liu Z, Li T, Deng S, et al. Radiation induces apoptosis and osteogenic impairment through miR-22-mediated intracellular oxidative stress in bone marrow mesenchymal stem cells. Stem Cells Int. 2018;2018:5845402.
  • Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 2016;97:47–55.
  • Hu J, Zeng L, Huang J, et al. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res. 2015;1608:191–202.
  • Weiyang S, Chienwei F, Chungchih T, et al. Therapeutic effect of Guijiajiao (Colla Carapacis et Plastri) on bone regeneration in rats and zebrafish. J Tradit Chin Med. 2018;38(2):197–210.
  • Soares IMV, Fernandes GVdO, Cavalcante LC, et al. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: characterization and treatment of non-critical defects of the tibia in rats. J Appl Oral Sci. 2019;27:e20180103.
  • Lee D-H, Kim I-K, Cho H-Y, et al. Effect of herbal extracts on bone regeneration in a rat calvaria defect model and screening system. J Korean Assoc Oral Maxillofac Surg. 2018;44(2):79–85.
  • Bhat G, Kudva P, Dodwad V. Aloe vera: nature's soothing healer to periodontal disease. J Indian Soc Periodontol. 2011;15(3):205–209.
  • Boonyagul S, Banlunara W, Sangvanich P, et al. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model. Odontology. 2014;102(2):310–317.
  • Chantarawaratit P, Sangvanich P, Banlunara W, et al. Acemannan sponges stimulate alveolar bone, cementum and periodontal ligament regeneration in a canine class II furcation defect model. J Periodontal Res. 2014;49(2):164–178.
  • Porter RM, Huckle WR, Goldstein AS. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J Cell Biochem. 2003;90(1):13–22.
  • Kasugai S, Todescan R, Jr Nagata T, et al. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol. 1991;147(1):111–120.
  • Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4(5):117.
  • Maniatopoulos C, Sodek J, Melcher A. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254(2):317–330.
  • Beresford J, Bennett J, Devlin C, et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992;102(2):341–351.
  • Peng L, Fu C, Xiong F, et al. Effectiveness of pulsed electromagnetic fields on bone healing: a systematic review and meta-analysis of randomized controlled trials. Bioelectromagnetics. 2020;41(5):323–337.
  • Dong Y, Suryani L, Zhou X, et al. Synergistic effect of PVDF-coated PCL-TCP scaffolds and pulsed electromagnetic field on osteogenesis. Int J Mol Sci. 2021;22(12):6438.
  • Varani K, Gessi S, Merighi S, et al. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol. 2002;136(1):57–66.
  • Varani K, Vincenzi F, Ravani A, et al. Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields. Mediators Inflamm. 2017;2017:2740963.
  • Borhani S. editor Signaling at adenosine A2A receptor (A2aR) in osteoblasts; crosstalk with Wnt/β-catenin signaling pathway. 2018 ACR/ARHP Annual Meeting; 2018. ACR.
  • Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res (1976–2007). 2004;419:30–37.
  • Zhou J, He H, Yang L, et al. Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats. Arch Med Res. 2012;43(4):274–282.
  • Fujioka-Kobayashi M, Caballé-Serrano J, Bosshardt DD, et al. Bone conditioned media (BCM) improves osteoblast adhesion and differentiation on collagen barrier membranes. BMC Oral Health. 2016;17(1):7.
  • Osugi M, Katagiri W, Yoshimi R, et al. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18(13–14):1479–1489.
  • Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014:965849.
  • Meiliana A, Dewi NM, Wijaya A. Mesenchymal stem cell secretome: cell-free therapeutic strategy in regenerative medicine. Indones Biomed J. 2019;11(2):113–124.
  • Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–127.
  • Zhang S, Chen L, Jiang Y, et al. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9(7):7236–7247.
  • Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineering. J Control Release. 2021;338:571–582.
  • Zaher DM, El-Gamal MI, Omar HA, et al. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm. 2020;353(5):e2000011.
  • Woodard JR, Hilldore AJ, Lan SK, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28(1):45–54.
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13(1):94–117.
  • Rezwan K, Chen Q, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431.
  • Lei B, Guo B, Rambhia KJ, et al. Hybrid polymer biomaterials for bone tissue regeneration. Front Med. 2019;13(2):189–201.
  • De Mori A, Peña Fernández M, Blunn G, et al. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers. 2018;10(3):285.
  • Hong N, Yang GH, Lee J, et al. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater. 2018;106(1):444–459.
  • Adepu S, Dhiman N, Laha A, et al. Three-dimensional bioprinting for bone tissue regeneration. Curr Opin Biomed Eng. 2017;2:22–28.
  • Kneser U, Polykandriotis E, Ohnolz J, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006;12(7):1721–1731.
  • Liu Y, Chan JK, Teoh SH. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med. 2015;9(2):85–105.
  • Griffin KS, Davis KM, McKinley TO, et al. Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinic Rev Bone Miner Metab. 2015;13(4):232–244.
  • Kumar S, Wan C, Ramaswamy G, et al. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther. 2010;18(5):1026–1034.
  • Bae J-H, Song H-R, Kim H-J, et al. Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna. Tissue Eng Part A. 2011;17(19–20):2389–2397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.