569
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts

, , , , , & ORCID Icon show all
Pages 1531-1554 | Received 25 Dec 2021, Accepted 08 Apr 2022, Published online: 28 Apr 2022

References

  • Beyatricks KJ, Kumar KS, Suchitra D, et al. Recent microsphere formulations and its applications in herbal drugs – a review. Int J Pharm Dev Technol. 2014;4:58–62.
  • Bonifácio BV, da Silva PB, Aparecido dos Santos Ramos M, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15.
  • Ben-Shabat S, Yarmolinsky L, Porat D, et al. Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10(2):354–367.
  • Bandawane A, Saudagar R, A review on novel drug delivery system: a recent trend. Int J Drug Deliv Technol. 2019;9:517–521.
  • Hussain Z, Thu HE, Shuid AN, et al. Phytotherapeutic potential of natural herbal medicines for the treatment of mild-to-severe atopic dermatitis: a review of human clinical studies. Biomed Pharmacother. 2017;93:596–608.
  • Gorain B, Pandey M, Leng NH, et al. Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm. 2022;617:121617. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517322001727
  • Byeon JC, Ahn JB, Jang WS, et al. Recent formulation approaches to oral delivery of herbal medicines. J Pharm Investig. 2019;49(1):17–26.
  • Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–265.
  • Gorain B, Choudhury H, Nair AB, et al. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today. 2020;25(7):1174–1188.
  • Surekha B, Kommana NS, Dubey SK, et al. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf B Biointerfaces. 2021;204:111837. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776521002812
  • Shukla R, Singh A, Pardhi V, et al. Dendrimer-based nanoparticulate delivery system for cancer therapy. In: Polymeric nanoparticles as a promising tool for anti-cancer therapeutics. Amsterdam: Elsevier; 2019. p. 233–255.
  • Dubey SK, Kali M, Hejmady S, et al. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur J Pharm Sci. 2021;164:105890. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928098721001913
  • He Y, Xu M, Dong L, et al. Infrared spectroscopic identification of mineral drugs in herbal preparations with thermogravimetry-guided thermal separation – a case study of alum in a herbal powder for oral ulcer. J Mol Struct. 2022;1249:131581.
  • Iurckevicz G, Dahmer D, Santos VAQ, et al. Encapsulated microparticles of (1→6)-β-d-glucan containing extract of Baccharis dracunculifolia: production and characterization. Molecules. 2019;24(11):2099.
  • Ekar T, Kreft S. Common risks of adulterated and mislabeled herbal preparations. Food Chem Toxicol. 2019;123:288–297.
  • Huang Y, Zhang K, Liu M, et al. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. Phytomedicine. 2021;91:153633.
  • Devi V, Jain N, Valli K. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. 2010;4(7):27–31.
  • Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed. 2013;3(4):253–266.
  • Mukherjee PK, Harwansh RK, Bhattacharyya S. Bioavailability of herbal products: approach toward improved pharmacokinetics. Approach toward improved pharmacokinetics. In: Evidence-based validation of herbal medicine. Amsterdam: Elsevier Inc.; 2015.
  • Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81:680–689.
  • Gorain B, Pandey M, Choudhury H. Dendrimer for solubility enhancement. In: Dendrimer-based nanotherapeutics. Amsterdam: Elsevier; 2021. p. 273–283. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128212509000251
  • Dubey SK, Parab S, Dabholkar N, et al. Oral peptide delivery: challenges and the way ahead. Drug Discov Today. 2021;26(4):931–950.
  • Meher JG, Dixit S, Pathan DK, et al. Paclitaxel-loaded TPGS enriched self-emulsifying carrier causes apoptosis by modulating survivin expression and inhibits tumour growth in syngeneic mammary tumours. Artif Cells, Nanomedicine, Biotechnol. 2018;46:S344–S358. Available from: https://www.tandfonline.com/doi/full/10.1080/21691401.2018.1492933
  • Shukla R, Singh A, Handa M, et al. Nanotechnological approaches for targeting amyloid-β aggregation with potential for neurodegenerative disease therapy and diagnosis. Drug Discov Today. 2021;26(8):1972–1979. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644621001987
  • Singh S, Singh G, Sehrawat S, et al. Conclusion and future considerations of dendrimers. In: Dendrimer-based nanotherapeutics. Amsterdam: Elsevier; 2021.p. 449–458. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128212509000056
  • Agrawal M, Prathyusha E, Ahmed H, et al. Biomaterials in treatment of Alzheimer's disease. Neurochem Int. 2021;145:105008.
  • Vaishnav Pavan Kumar A, Dubey SK, Tiwari S, et al. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm. 2021;606:120848. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517321006530
  • Kumar Dubey S, Pradhan R, Hejmady S, et al. Emerging innovations in nano-enabled therapy against age-related macular degeneration: a paradigm shift. Int J Pharm. 2021;600:120499.
  • Kamble OS, Sanket AS, Samal SK, et al. Advances in transdermal delivery of nanomedicine. In: Theory and applications of nonparenteral nanomedicines. Amsterdam: Elsevier; 2021. p. 383–408.
  • Dubey SK, Dey A, Singhvi G, et al. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces. 2022;214:112440. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776522001230
  • Modi D, Mohammad, Warsi MH. Formulation development, optimization, and in vitro assessment of thermoresponsive ophthalmic pluronic F127-chitosan in situ tacrolimus gel. J Biomater Sci Polym Ed. 2021;32(13):1678–1702. Available from: https://www.tandfonline.com/doi/full/10.1080/09205063.2021.1932359
  • Patnaik S, Gorain B, Padhi S, et al. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm. 2021;161:100–119.
  • Maddiboyina B, Hanumanaik M, Nakkala RK, et al. Formulation and evaluation of gastro-retentive floating bilayer tablet for the treatment of hypertension. Heliyon. 2020;6(11):e05459.
  • Kumar BP, Sarath Chandiran I, Bhavya B, et al. Microparticulate drug delivery system: a review. Indian J Pharm Sci Res. 2011;4:217–220.
  • Zulham Z, Wilar G, Susilawati Y, et al. Microparticles of herbal extracts with antioxidant activity. PJ. 2021;13(1):285–295.
  • Blatt Y, Kimmelman E, Cohen D, et al. Microencapsulated and controlled-release herbal formulations. 2002; U.S. Patent 6,340,478.
  • Blatt Y, Arad O, Kimelman E, et al. Microencapsulated and controlled-release formulations of isoflavone from enriched fractions of soy and other plants. 2005; U.S. Patent 6,890,561.
  • Bale S, Khurana A, Reddy ASS, et al. Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2016;33(4):309–361.
  • Yuni Hendrawati T, Meta Sari A, Iqbal Syauqi Rahman M, et al. Microencapsulation techniques of herbal compounds for raw materials in food industry, cosmetics and pharmaceuticals. In: Microencapsulation – Processes, Technologies and Industrial Applications. IntechOpen; 2019. p. 1–15.
  • Esposito T, Mencherini T, Del Gaudio P, et al. Design and development of spray-dried microsystems to improve technological and functional properties of bioactive compounds from hazelnut shells. Molecules. 2020;25(6):1273.
  • Sansone F, Mencherini T, Picerno P, et al. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J Food Eng. 2011;105(3):468–476.
  • Park JH, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs. Molecules. 2005;10(1):146–161.
  • Iqbal M, Zafar N, Fessi H, et al. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496(2):173–190.
  • Salvi Neelima CGP. Formulation and development of microparticles containing herbal plant. J Drug Deliv Ther. 2019;9:89–92.
  • Jayanudin Fahrurrozi M, Wirawan SK. Preparation of chitosan microcapsules containing red ginger oleoresin using emulsion crosslinking method. J Appl Biomater Funct Mater. 2019;17. Available from: https://journals.sagepub.com/doi/full/10.1177/2280800018809917
  • Suganya V, Anuradha V. Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res. 2017;9:233–239.
  • Mudrić J, Ibrić S, Đuriš J. Microencapsulation methods for plants biologically active compounds: a review. Lek Sirovine. 2018;38(38):62–67.
  • Gupta S, Parvez N, Bhandari A, et al. Microspheres based on herbal actives: the less-explored ways of disease treatment. Egypt Pharmaceut J. 2015;14(3):148.
  • Casanova F, Santos L. Encapsulation of cosmetic active ingredients for topical application – a review. J Microencapsul. 2016;33(1):1–17.
  • Aniesrani Delfiya D, Thangavel K. In vitro release kinetics of spray dried curcumin-loaded egg albumin microparticles. Int J Herb Med. 2017;5:45–48.
  • Mehta N, Kumar P, Verma AK, et al. Microencapsulation as a noble technique for the application of bioactive compounds in the food industry: a comprehensive review. Appl Sci. 2022;12:1–34.
  • Jyothi NVN, Prasanna PM, Sakarkar SN, et al. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. 2010;27(3):187–197.
  • Ahirrao SP, Gide PS, Shrivastav B, et al. Ionotropic gelation: a promising cross linking technique for hydrogels. Res Rev J Pharm Nanotechnol. 2014;2:1–6.
  • Yousefi M, Khorshidian N, Mortazavian AM, et al. Preparation optimization and characterization of chitosan-tripolyphosphate microcapsules for the encapsulation of herbal galactagogue extract. Int J Biol Macromol. 2019;140:920–928.
  • Pudziuvelyte L, Marksa M, Sosnowska K, et al. Freeze-drying technique for microencapsulation of Elsholtzia ciliata ethanolic extract using different coating materials. Molecules. 2020;25(9):2237.
  • Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–1534.
  • Maniam GP, Govindan N, Rahim MHA, et al. Plant extracts: nanoparticle sources. In: Phytonanotechnology. Amsterdam: Elsevier Inc.; 2020.
  • Kashyap D, Tuli HS, Yerer MB, et al. Natural product-based nanoformulations for cancer therapy: opportunities and challenges. Semin Cancer Biol. 2019;69:5–23.
  • Thilagavathi G, Bala SK, Kannaian T. Microencapsulation of herbal extracts for microbial resistance in healthcare textiles. Indian J Fibre Text Res. 2007;32:351–354.
  • Yip J, Luk MYA. Microencapsulation technologies for antimicrobial textiles. In: Antimicrobial textiles. Boston: Elsevier Ltd; 2016.
  • Murugesh Babu K, Ravindra KB. Bioactive antimicrobial agents for finishing of textiles for health care products. J Text Inst. 2015;106(7):706–717.
  • Ganesan P, Vishnu Vardhini KJ. Herbal treated microbial resistant fabrics for healthcare textiles. Indian J Nat Prod Resour. 2015;6:227–230.
  • Rana M, Singh SSJ, Yadav S. Effect of microencapsulated plant extracts on mosquito repellency. JANS. 2017;9(4):2127–2131.
  • Yang S, Liu L, Han J, et al. Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques. Int J Cosmet Sci. 2020;42(1):16–28.
  • Ammala A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci. 2013;35(2):113–124.
  • Nandy A, Lee E, Mandal A, et al. Microencapsulation of retinyl palmitate by melt dispersion for cosmetic application. J Microencapsul. 2020;37(3):205–219.
  • Harris R, Lecumberri E, Mateos-Aparicio I, et al. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym. 2011;84(2):803–806.
  • Tang Y, Yang S, He W, et al. Stabilization of Chinese Gallnut (Galla Chinensis) tannins by spray-drying microencapsulation for natural hair coloring. Fibers Polym. 2020;21(6):1283–1292.
  • Tang Y, He W, Yang S, et al. Stabilisation and detoxification of henna (Lawsonia inermis L.) extract for hair dye cosmetics by spray-drying encapsulation. Coloration Technol. 2019;135(6):439–450.
  • Prasad BSG, Gupta VRM, Devanna N, et al. Microspheres as drug delivery system – a review. J Glob Trends Pharm Sci J. 2014;5:1960–1972.
  • Zokti JA, Baharin BS, Mohammed AS, et al. Green tea leaves extract: microencapsulation, physicochemical and storage stability study. Molecules. 2016;21(8):940–924.
  • Outuki PM, Maria L, Francisco BD, et al. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surf A Physicochem Eng Asp. 2016;499:103–122.
  • Cabral B, Pimenta R, Souza TD, et al. Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. J Food Eng. 2018;238:195–201.
  • Mulia K, Risqi UY, Pane IF, et al. Formulation, characterization, and release property of antioxidant supplement capsule with red ginger oleoresin extract-loaded chitosan formulation, characterization, and release property of antioxidant supplement capsule with red ginger oleoresin ext. J Phys: Conf Ser. 2019;1198:062008.
  • de Moura SC, Berling CL, Germer SP, et al. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: pigment stability during storage of microparticles. Food Chem. 2017;241:317–327.
  • Kozlowska J, Stachowiak N, Prus W. Stability studies of collagen-based microspheres with calendula of fi cinalis fl ower extract. Polym Degrad Stab. 2019;163:214–219.
  • Silva MP, Thomazini M, Holkem AT, et al. Production and characterization of solid lipid microparticles loaded with guaraná (Paullinia cupana) seed extract. Food Res Int. 2019;123:144–152.
  • Belščak-cvitanović A, Đorđević V, Karlović S, et al. Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll. 2015;51:361–374.
  • Yingngam B, Tantiraksaroj K, Taweetao T. Modeling and stability study of the anthocyanin-rich maoberry fruit extract in the fast-dissolving spray-dried microparticle. Powder Technol. 2017;325:261–270.
  • Trifković K, Milašinović N, Djordjević V, et al. Chitosan crosslinked microparticles with encapsulated polyphenols: water sorption and release properties. J Biomater Appl. 2015;30:618–631.
  • Human C, Beer DD, Aucamp M, et al. Preparation of rooibos extract-chitosan microparticles: physicochemical characterisation and stability of aspalathin during accelerated storage. LWT – Food Sci Technol. 2020;117:108653.
  • Echeverry SM, Valderrama IH, Costa GM, et al. Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. J Appl Pharm Sci. 2018;8:10–18.
  • Oliveira FD, Garreto DV, Mayara CP, et al. Therapeutic potential of biodegradable microparticles containing Punica granatum L. (pomegranate) in murine model of asthma. Inflamm. Res. 2013;62(11):971–980.
  • Maciel VV, Yoshida CMP, Boesch C, et al. Food hydrocolloids iron-rich chitosan-pectin colloidal microparticles laden with ora-pro-nobis (Pereskia aculeata Miller) extract. Food Hydrocoll. 2020;98:105313.
  • Mazutti SM, Ferreira-nunes R, Amore CR, et al. Emulsion incorporating Eugenia dysenterica aqueous extract entrapped in chitosan microparticles as a novel topical treatment of cutaneous infections. J Drug Deliv Sci Technol. 2020;55:101372.
  • Martins A, Barros L, Carvalho M, et al. Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food Funct. 2014;5(6):1091–1100.
  • Bayraktar O, Köse MD, Baspinar Y. Development of olive leaf extract loaded fibroin microparticles by spray drying. Drug Discov. 2019;13:39–45.
  • Zheng L, Ding Z, Zhang M, et al. Microencapsulation of bayberry polyphenols by ethyl cellulose: preparation and characterization. J Food Eng. 2011;104(1):89–95.
  • Fernandes LP, Candido RC, Oliveira WP. Spray drying microencapsulation of Lippia sidoides extracts in carbohydrate blends. Food Bioprod Process. 2012;90(3):425–432.
  • dos Santos TC, Battisti MA, Lobo KL, et al. Vasorelaxant effect of standardized extract of Cecropia glaziovii Snethl encapsulated in PLGA microparticles: in vitro activity, formulation development and release studies. Mater Sci Eng C Mater Biol Appl. 2018;92:228–235.
  • Neri-Numa IA, DellaTorre A, Oriani VB, et al. In vitro bioactivity approach of unripe genipap (Genipa americana L., Rubiaceae) fruit extract and its solid lipid microparticle. Food Res Int. 2020;127:108720.
  • Chaumun M, Goëlo V, Ribeiro AM, et al. In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products. Food Bioprod Process. 2020;122:124–135.
  • Zu C, Zhao X, Du X. Enhanced water-solubility of licorice extract microparticle prepared by antisolvent precipitation process. Adv Powder Technol. 2014;25(2):787–794.
  • Singh R, Satapathy T, Prasad J. Development, characterization and evaluation of microparticles containing Acacia arabica. Mater Today Proc. 2020;33:5397–5402.
  • Klein T, Longhini R, Bruschi ML, et al. Microparticles containing Guaraná extract obtained by spray-drying technique: development and characterization. Rev Bras Farmacogn. 2015;25(3):292–300.
  • Benelli L, Oliveira WP. Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract. Food Bioprod Process. 2019;114:216–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.