1,728
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing

Pages 1595-1622 | Received 08 Feb 2022, Accepted 19 Apr 2022, Published online: 01 May 2022

References

  • Vaneau M, Chaby G, Guillot B, et al. Consensus panel recommendations for chronic and acute wound dressings. Arch Dermatol. 2007;143(10):1291–1294.
  • Li J, Zhai D, Lv F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–266.
  • Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to promote wound healing – a review. J Mater Chem B. 2013;1(36):4531–4541.
  • Madsen J, Armes SP, Bertal K, et al. Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules. 2008;9(8):2265–2275.
  • Zhu J, Han H, Li F, et al. Self-assembly of amino acid-based random copolymers for antibacterial application and infection treatment as nanocarriers. J Colloid Interface Sci. 2019;540:634–646.
  • Dong Y, Hassan WU, Kennedy R, et al. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater. 2014;10(5):2076–2085.
  • Tran NQ, Joung YK, Lih E, et al. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules. 2011;12(8):2872–2880.
  • Kokabi M, Sirousazar M, Hassan ZM. PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J. 2007;43(3):773–781.
  • Choi J, Yoo H. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A. 2010;95(2):564–573.
  • Augustine R, Dan P, Schlachet I, et al. Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. Int J Pharm. 2019;559:420–426.
  • Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings. APL Bioeng. 2021;5(1):011504.
  • Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur Polym J. 2020;130:109609.
  • Liu H, Wang C, Li C, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8(14):7533–7549.
  • Alven S, Aderibigbe BA. Chitosan and cellulose-based hydrogels for wound management. IJMS. 2020;21(24):9656.
  • Pourshahrestani S, Zeimaran E, Kadri NA, et al. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv Healthcare Mater. 2020;9(20):2000905.
  • Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7(1):1–21.
  • Tang Q, Chen C, Ren J, et al. Engineering an adhesive based on pohtoosen sitive polymer hhydrogls and silver nanoparticles for wound healing. J Mater Chem B. 2020;8(26):5756–5764.
  • Wang D, Xu P, Wang S, et al. Rapidly curable hyaluronic acid-catechol hydrogels inspired by scallops as tissue adhesives for hemostasis and wound healing. Eur Polym J. 2020;134:109763.
  • Liu W, Yang C, Gao R, et al. Polymer composite sponges with inherent antibacterial, hemostatic, inflammation-modulating and proregenerative performances for methicillin-resistant staphylococcus aureus-infected wound healing. Adv Healthcare Mater. 2021;10(22):2101247.
  • Gao Z, Su C, Wang C, et al. Antibacterial and hemostatic bilayered electrospun nanofibrous wound dressings based on quatenized silicone and quaternized chitosan for wound healing. Eur Pdym J. 2021;159:110733.
  • Shen S, Fan D, Yuan Y, et al. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds. Chem Eng J. 2021;426:130610.
  • Du X, Wu L, Yan H, et al. Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Not. Commun. 2021;12(1):1–16.
  • Cui Y, Huang Z, Lei L, et al. Robust hemostatic bandages based on nanoclay electrospun membranes nat. Comm. 2021;12(1):1–11.
  • Tamer TM, Sabet MM, Ouner AM, et al. Themostatic and antibacterial PVA/kaolin compoite sponges loaded with penicillin – streptomycin for wound dressing applications. Sci rEp. 2021;11(1):1–5.
  • Lin JY, Luo SH, Chen SH, et al. Efficient synthesis, characterization and application of biobased scab-bionic hemostatic polymers. Polym J. 2020;52(6):615–627.
  • Bardania H, Mahmoudi R, Bagheri H, et al. Facile preparation of a novel biogenic silver-loaded nanofilm with intrinsic antibacterial and oxidant scavenging activities for wound healing. Sci Rep. 2020;10(1):1–14.
  • Zhang J, Zheng Y, Lee J, et al. A pulsatile release platform based on photoinduced imine-crosslinking hydrogel promotes scarless wound healing. Nat Common. 2021;12(1):1–13.
  • Bahadoran M, Shamloo A, Nokoorani YD. Development of a pooolyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep. 2020;10(1):1–18.
  • Gao G, Du G, Sun Y, et al. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces. 2015;7(8):5029–5037.
  • Tang Z, Chen F, Chen Q, et al. The energy dissipation and mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polym Chem. 2017;8(32):4659–4672.
  • Liu RQ, Liang SM, Tang XZ, et al. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem. 2012;22(28):14160–14167.
  • Pan C, Liu L, Chen Q, et al. Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Appl Mater Interfaces. 2017;9(43):38052–38061.
  • Ramanathan T, Abdala AA, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3(6):327–331.
  • Liu J, Song G, He C, et al. Self-healing in tough graphene oxide composite hydrogels. Macromol Rap Comm. 2013;34:1002–1007.
  • Shi FK, Wang XP, Guo RH, et al. Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B. 2015;3(7):1187–1192.
  • Gaharwar AK, Dammu SA, Canter JM, et al. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011;12(5):1641–1650.
  • Wang Y, Chang Q, Zhan R, et al. Tough but self-healing and 3D printable hydrogels. J Mater Chem A. 2019;7(43):24814–24829.
  • Zhong M, Liu YT, Xie MM. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions . J Mater Chem B. 2015;3(19):4001–4008.
  • Zhong M, Liu XY, Shi FK, et al. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter. 2015;11(21):4235–4241.
  • Xia S, Song S, Gao G. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem Eng J. 2018;354:817–824.
  • Cui C, Shao C, Meng L, et al. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS Appl Mater Interfaces. 2019;11(42):39228–39237.
  • Zhang E, Li J, Zhou Y, et al. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomater. 2017;55:420–433.
  • Rajeesh KR, Gnanamoorthy RR. The effect of moisture content on the tensile behavior of polyamide 6 nanocomposites. Proc Inst Mech Eng. 2010;1(4):1–4.
  • Hu C, Li Z, Wang Y, et al. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C. 2017;5(9):2318–2328.
  • Zhang L, Zhang Q, Xie H, et al. Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl Catalysis B; Env. 2017;201:470–478.
  • Morgado PI, Miguel SP, Correia IJ, et al. Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydr Polym. 2017;159:136–145.
  • Ramasamy P, Shanmugam A. Characterization and wound healing property of collagen-chitosan film from sepia kobiensis (Hoyle, 1885)). Int J Biol Macromol. 2015;74:93–102.
  • Dai T, Tanaka M, Huang YY, et al. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011;9(7):857–879.
  • Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomater. 2003;24(13):2339–2349.
  • Ebhodaghe SO. Hydrogel-based biopolymers for regenerative medicine applications: a critical review. Int J Polym Mater Polym Biomater. 2020;71:1–18.
  • Vaghari H, Jafarizadeh-Malmiri H, Berenjian A, et al. Recent advances in application of chitosan in fuel cells. Sus Chem Pro. 2013;1(1):16.
  • Du L, Tong L, Jin Y, et al. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen. 2012;20(6):904–910.
  • Gaharwar AK, Avery RK, Assmann A, et al. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano. 2014;8(10):9833–9842.
  • Han L, Wang M, Prieto-Lopez LO, et al. Self-hydrophobization in a dynamic hydrogel for creating non-specific repeatable underwater adhesion. Adv Funct Mater. 2020;30(7):1907064.
  • Yuk H, Wu J, et al. Rapid and coagulation – independent haemostatic sealing by a paste inspired by barnacle glue. Nat Biomed Eng. 2021;5:1–12.
  • Hong Y, Zhou F, et al. A strongly adhesive haemostatic hydrogel for the repair of arterial and heart bleeds. Nat Comm. 2019;10(1):1–11.
  • An S, Jeon EJ, Jeon J, et al. A serotonin-modified hyaluronic acid hydrogel for multifunctional haemostatic adhesive inspired by a platelet coagulation mediator. Mater Horiz. 2019;6(6):1169–1178.
  • Li J, Celiz A, Yang J, et al. Tough adhesives for diverse wet surfaces. Science. 2017;357(6349):378–378.
  • Ghobril C, Grinstaff M. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev. 2015;44(7):1820–1835.
  • Zhu W, Chuah YJ, Wang DA. Bioadhesives for internal medical applications: a review. Acta Biomater. 2018;74:1–16.
  • Xie Y, Liao X, Zhang J, et al. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Bio Macromol. 2018;119:402–412.
  • Demling R, Leslie De Santi M. The rate of re-epithelialization across meshed skin grafts is increased ith exposure to silver. Burns. 2002;28(3):264–266.
  • Ebhodaghe SO. Antibacterial properties of hydrogel-based biopolymers for skin wound repairs: a highlight of current research and future advances. Routledge Encyclopedia of Polymers, Polymeric Materials, and Polymer Technology, 2021. Accepted Manuscript.
  • Mihic A, Cui Z, Wu J, et al. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation. 2015;132(8):772–784.
  • Wang Z, Nie J, Qin W, et al. Gelation process visualized by aggregation-induced emission fluorogens. Nat Comm. 2016;7:12033.
  • Cao J, You J, Zhang L, et al. Homogeneous synthesis and characterization of chitosan ethers prepared in aqueous alkali/urea solutions. Carbohydr Polym. 2018;185:138–144.
  • Babu R, Zhang J, Beckman E, et al. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix. Biomater. 2006;27(24):4304–4314.
  • Zhao X, Zhou L, Riaz Rajoka M, et al. Fungal silver nanoparticles: Synthesis, application and challenges. Crit Review Biotechnol. 2017;38:1–19.
  • Wang D, Yang H, Zhou Z, et al. XPF plays an indispensable role in relieving silver nanoparticle induced DNA damage stress in human cells. Toxicol Lett. 2018;288:44–54.
  • Li S, Wang L, Yu X, et al. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding. Mater Sci Eng C Mater Biol Appl. 2018;82:299–309.
  • Liu Y, Qu XH, Guo HW, et al. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens Bioelectron. 2006;21(12):2195–2201.
  • Oryan A, Kamali A, Moshiri A, et al. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107(Pt A):678–688.
  • Han DL, Yan LF. Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D crosslinkers. ACS Sustainable Chem Eng. 2014;2(2):296–300.
  • Zhang L, Ma Y, Pan X, et al. A composite hydrogel of chitosan/heparin/poly (γ-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr Polym. 2018;180:168–174.
  • Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, et al. Protein and homo poly(amino acid)–based hydrogels with super-swelling properties. Polym Adv Technol. 2009;20(8):655–671.
  • Saliba MJ. Jr. Heparin in the treatment of burns: a review. Burns. 2001;27(4):349–358.
  • Sakiyamaelbert SE. Incorporation of heparin into biomaterials. Act Bio. 2014;10(4):1581–1587.
  • Wang CC, Chen CC, Chen FL, et al. An improvement on water absorbing and permeating properties: Heparin immobilizing on acrylic acid-grafted and collagen/chitosan-immobilized wound dressing. J Appl Polym Sci. 2008;109(3):1431–1438.
  • Harkins AL, Simon D, Kloth LC, et al. Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. J Biomed Mater Res B Appl Biomater. 2014;102(6):1199–1206.
  • Ebhodaghe SO. Natural polymers for tissue engineering applications. J Biomater Sci Polym Ed. 2021;32:1–49.
  • Akhavan-Kharazian N, Izadi-Vasafi H. Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol. 2019;133:881–891.
  • Jridi M, Hajji S, Ayed HB, et al. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int J Biol Macromol. 2014;67:373–379.
  • Vongchan P, Sajomsang W, Subyen D, et al. Anticoagulant activity of a sulfated chitosan. Carb Res. 2002;337(13):1239–1242.
  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–337.
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99.
  • Akhihiero ET, Ebhodaghe SO. Effect of blending ratio on the fuel properties of almond biodiesel. Eur J Sus Dev. 2020;4:1–6.
  • Akhihiero ET, Omorewa YG, Ebhodaghe SO. Effect of blending ratio on the properties of sunflower biodiesel. J Mater Sci Environ. 2019;10:987–994.
  • Madian NG, El-Hossainy M, Khalil WA. Improvement of the physical properties of chitosan by Ƴ-ray degradation for wound healing. Results Phys. 2018;11:951–955.
  • Xie Y, Liao X, Zhang J, et al. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int J Biol Macromol. 2018;119:402–412.
  • Mohamed N, Madian NG. Evaluation of the mechanical, physical and antimicrobial properties of chitosan thin films doped with greenly synthesized silver nanoparticles. Mater Today Comm. 2020;101372:25.
  • Talebi H, Ghasemi AF, Ashori A. The effect of nanocellulose on mechanical and physical properties of chitosan – based biocomposites. J Elasto Plast. 2021;21:1–20.
  • Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, et al. Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci Rep. 2021;11(1):650.
  • Wang F, Pang Y, Chen G, et al. Enhanced physical and biological properties of chitosan scaffold by silk proteins crosslinking. Carb Polym. 2019.
  • Izaguirre N, Gordobil O, Robles E, et al. Enhancement of UV absorbance and mechanical properties of chitosan films by the incorporation of solvolytically fractionated lignins. Int J Biol Macromol. 2020;155:447–455.
  • Evranos B, Aycan D, Alemdar N. Production of ciprofloxacin loaded chitosan/gelatin/bone ash wound dressing with improved mechanical properties. Carbohydr Polym. 2019;222:115007.
  • Pires ALR, Moraes AM. Improvement of the mechanical properties of chitosan-alginate wound dressings containing silver through the addition of a biocompatible silicone rubber. J Appl Polym. 2014;132:41686–41695.
  • Singh B, Pal L. Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater. 2012;9:9–21.
  • Dantas MDM, Cavalcante DRR, Araujo FEN, et al. Albuquerque junior RLC. Improvement of dermal burn healing by combining sodium alginate/chitosan-based films and low level laser therapy. J Photochem Photobiol B. 2011;105(1):51–51.
  • Wang L, Khor E, Lim LY. Chitosan-alginate-CaCl(2) system for membrane coat application. J Pharm Sci. 2001;90(8):1134–1142.
  • Verma D, Desai MS, Kulkarni N, et al. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials. Mater Sci Eng C. 2011;31:1741–1747.
  • Taheri P, Jahanmardi R, Koosha M, et al. Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. Int J Biol Macromol. 2020;154:421–432.
  • Boateng JS, Matthews KH, Stevens HNE, et al. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–2923.
  • Jin SG, Kim KS, Yousaf AM, et al. Mechanical properties and in vivo healing evaluation of a novel centella asiatica-loaded hydrocolloid wound dressing. Int J Pharm. 2015;490(1–2):240–247.
  • Shahram E, Sadraie SH, Kaka G, et al. Evaluation of chitosan-gelatin films for use as postoperative adhesion barrier in rat cecum model. Int J Surg. 2013;11(10):1097–1102.
  • Rubentheren V, Ward TA, Chee CY, et al. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Carbohydr Polym. 2016;140:202–208.
  • Poonguzhali R, Basha SK, Kumari VS. Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int J Biol Macromol. 2017;105(Pt 1):111–120.
  • Halim ALA, Kamari A, Phillip E. Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int J Biol Macromol. 2018;120(Pt A):1119–1126.
  • Rivero S, Garcia M, Pinotti A. Cross-linking capacity of tannic acid in plasticized chitosan films. Carb Polym. 2010;82(2):270–276.
  • Shankar S, Tanomrod N, Rawdkuen S, et al. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol. 2016;92:842–849.
  • Liu W, Ou-Yang W, Zhang C, et al. Synthetic polymeric antibacterial hydrogel for methicillin-resistant Staphylococcus aureus – infected wound healing: Nanoantimicrobial self assembly, drug- and cytokine-free strategy. ACS Nano. 2020;14(10):12905–12917.
  • Straccia MC, Romano I, Oliva A, et al. Crosslinker effects on functional properties of alginate/N-succinylchitosan based hydrogels. Carbohydr Polym. 2014;108:321–330.
  • Klinkajon W, Supaphol P. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings . Biomed Mater. 2014;9(4):045008.
  • Li X, Xu S, Wang Y, et al. A high strength hydrogel with quadruple-shape memory under the ambient condition. Col Polym Sci. 2019;297:503–512.
  • Li W, Ou-Yang W, Zhang C, et al. Synthetic polymeric antibacterial hydrogel for methicillin-resistant Staphylococcus aureus – infected wound healing: Nanoantimicrobial self-assembly, drug-, cytokine-free strategy. ACS Nano. 2020;14:12905–12917.
  • Garnica-Palafox IM, Sanchez-Arevalo FM. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carb Polym. 2016;151:1073–1081.
  • Hong Y, Zhou F, Hua Y, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat Comm. 2019;10:1.
  • Krishnadoss V, Melillo A, Kanjilal B, et al. Bioionic liquid conjugation as universal approach to engineer hemostatic bioadhesives. ACS Appl Mater Interfaces. 2019;11(42):38373–38384.
  • Luo JW, Liu C, Wu JH, et al. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. Mater Sci Eng C Mater Biol Appl. 2019;98:628–634.
  • Chen H, Xing X, Tan H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):287–295.
  • Kumar PTS, Lakshmanan VK, Anilkumar TV, et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces. 2012;4(5):2618–2629.
  • Elsner JJ, Berdicevsky I, Zilberman M. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics. Acta Biomater. 2011;7(1):325–336.
  • Huang W, Wang Y, Huang Z, et al. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl Mater. 2018;10:41076–41088.
  • Garcia-Orue I, Santos-Vizcaino E, Etxabide A, et al. Development of bioinspired gelatin and gelatin/chitosan bilayer hydrofilms for wound healing. Pharma. 2019;11(7):314.
  • Ahmadian Z, Correia A, Hasany M, et al. A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH – responsive wound healing acceleration. Adv Healthcare Mater. 2021;10(3):2001122.
  • Jimoh TO, Ogunmoyole T, Aladejana EA, et al. Antioxidant potential of tannic acid on lipid peroxidation induced by several pro-oxidants in cerebral and hepatic lipids. Int J Ethnopharma. 2016;2:14.
  • Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–233.
  • Gomez-Aparicio LS, Bernaldez-Sarabia J, Camacho-Villegas TA, et al. Improvement of the wound healing properties of hydrogels with N-acetylcysteine through their modification with methacrylate-containing polymers. Biomater Sci. 2021;9(3):726–744.
  • Pavlinakova V, Fahlerova Z, Pavlinak D, et al. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic poly caprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C. 2018;91:94–102.
  • Xing Q, Yates K, Vogi C, et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep. 2014;4(4706):1–10.
  • Shan Y, Li C, Wu Y, et al. Hybrid cellulose nanocrystal/alginate/gelatin scaffold with improved mechanical properties and guided wound healing. RSC Adv. 2019;9(40):22966–22979.
  • He X, Liu X, Yang J, et al. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carb Polym. 2020;247:116689.
  • Yang C, Dan N, You W, et al. Modification of collagen-chitosan membrane by oxidation sodium alginate and in vivo/in vitro evaluation for wound dressing application. Int J Polym Anal Charact. 2019;24:619–629.
  • Kozłowska J, Sionkowska A. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Int J Biol Macromol. 2015;74:397–403.
  • Han B, Jaurequi J, Wei TB, et al. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610.
  • Hu Y, Liu L, Gu Z, et al. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr Polym. 2014;102:324–332.
  • Aderibigbe BA, Buyana B. Alginate in wound dressings. Pharm. 2018;10(2):42.
  • Pietrucha K, Marzec E, Kudzin M. Pore structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair. Int J Biol Macromol. 2016;92:1298–1306.
  • Balakrishnan B, Mohanty M, Umashankar PR, et al. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomater. 2005;26(32):6335–6342.
  • Taravel MN, Domard A. Relation between the physicochemical characteristics of collagen and its interactions with chitosan. Biomater. 1993;14(12):930–938.
  • De SK, Reis ED, Kerstein MD. Wound treatment with human skin equivalent. J Am Podiatr Med Assoc. 2002;92(1):19–23.
  • McCarty SM, Percival SL. Proteases and delayed wound healing. Adv Wound Care. 2013;2(8):438–447.
  • Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617–620.
  • Ju HW, Lee OJ, Lee JM, et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int J Biol Macromol. 2016;85:29–39.
  • Chun HJ, Park K, Kim CH, et al. In novel biomaterials for regenerative medicine (eds Chun HJ). Springer, New York, 2018.
  • Wang SD, Ma Q, Wang K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS Omega. 2018;3(1):406–413.
  • Guang S, et al. Chitosan/silk fibroin composite scaffolds for wound dressing. J Appl Polym Sci. 2015;132:42503–42510.
  • De Simone S, Gallo A, Paladini F, et al. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med. 2014;25(9):2205–2214.
  • Calamak S, Aksoy EA, Ertas N, et al. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag + release and antibacterial activity. Eur Polym J. 2015;67:99–112.
  • Gu Y, Zhu J, Xue C, et al. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomater. 2014;35(7):2253–2263.
  • Bhowmick S, Koul V. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Mater Sci Eng C Mater Biol Appl. 2016;59:109–119.
  • Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B Biointerfaces. 2006;49(2):136–144.
  • Galli C, Collaud Coen M, Hauert R, et al. Creation of nanostructures to study the topographical dependency of protein adsorption. Col Surf B. 2002;26(3):255–267.
  • Nie J, Gao Q, Wang Y, et al. Vessel-on-a-chip with hydrogel-based microfluidics. Small. 2018;14(45):1802368–1802314.
  • Cai N, Li C, Han C, et al. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe304 nanoparticles for potential wound dressing application. Appl Surf Sci. 2016;369:492–500.
  • Wei Y, Zhang X, Song Y, et al. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed Mater. 2011;6(5):055008.
  • Nwe N, Furuike T, Tamura H. The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from gongronella butleri. Mater. 2009;2(2):374–398.
  • Qin Y, Liu Y, Yuan L, et al. Preparation and characterization of antioxidant, antimicrobial and pH – sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll. 2019;96:102–111.
  • Vimala K, Mohan YM, Sivudu KS, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B Biointerfaces. 2010;76(1):248–258.
  • Khorasani MT, Joorabloo A, Moghaddam A, et al. Incorporation of ZnO nanoparticles into heparinized poly vinyl alcohol/chitosan hydrogels for wound dressing application. Biol Macromol. 2017;15:1203–1215.
  • Alipoormazandarani N, Ghazihoseini S, Mohammadi Nafchi A. Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay. Carbohydr Polym. 2015;134:745–751.
  • Jin SG, Kim KS, Kim DW, et al. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair. Int J Pharm. 2016;497(1-2):114–122.
  • Raguvaran R, Manuja BK, Chopra M, et al. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol. 2017;96:185–191.
  • Shalumon KT, Anulekha KH, Nair SV, et al. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol. 2011;49(3):247–254.
  • Anjum A, Sim CH, Ng SF. Hydrogels containing antibiofilm and antimicrobial agents beneficial for biofilm-associated wound infectiom: formulation characterizations and in vitro study. AAPS PharmSciTech. 2018;19(3):1219–1230.
  • Ryan TJ. Infection following soft tissue injury: its role in wound healing. Curr Opin Infect Dis. 2007;20(2):124–128.
  • Wei G-X, Campagna AN, Bobek LA. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother. 2006;57(6):1100–1109.
  • Pan H, Fan Duan Z, Zhu C, et al. Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing. Mater Sci Eng C Mater Biol Appl. 2019;105:110118.
  • Wilson SE, Chen L, Mohan RR, et al. Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding. Exp Eye Res. 1999;68(4):377–397.
  • Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008 Sep-Oct;16(5):585–601.
  • Nissen NN. Polvergenic activity during the proliferative phase of wound healing. J Am J Pathol. 1998;152(6):1445–1452.
  • Gaudry M, Brégerie O, Andrieu V, et al. Intracellular Pool of vascular endothelial growth factor in human neutrophils. J Blood. 1997;90(10):4153–4161.
  • Lih E, Lee JS, Park KM, et al. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater. 2012;8(9):3261–3269.
  • Lee C, Shin J, Lee JS, et al. Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules. 2013;14(6):2004–2013.
  • Sangeetha R, Kumar R, Venkatesan R, et al. Understanding the structure of the adhesive plaque of amphibalanus reticulatus. Mat Sci Eng R. 2010;30(1):112–119.
  • Laurenti JB, Zazeri G, Povinelli APR, et al. Enhanced pro-caogulant hemostatic agents based on nanometric zeolites. Micro Meso Matter. 2017;239:263–271.
  • Quan K, Li G, Tao L, et al. Diaminopropionic acid reinforced graphene sponge and its use for hemostasis. ACS Appl Mater Interfaces. 2016;8(12):7666–7673.
  • Wu Y, Wang L, Zhao X, et al. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomater. 2016;104:18–31.
  • Han W, Zhou B, Yang K, et al. Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact Mater. 2020;5(4):768–778.
  • Annabi N, Zhang YN, Assmann A, et al. Engineering a highly elastic human protein based sealants for surgical applications. Sci Transl Med. 2017;9:1–14.
  • Sauer K, Camper AK, Ehrlich GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;184(4):1140–1154.
  • Hong Y, Zhou F, Hua Y, et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat Comm. 2019;10(1):1–11.
  • Prasad YS, Miryala S, Lalitha K, et al. An injectableself-healing anesthetic glycolipid-based oleogel with antibiofilm and diabetic wound skin repair properties. Sci Rep. 2020;10(1):18017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.