731
Views
3
CrossRef citations to date
0
Altmetric
Article

Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan

, , &
Pages 1973-1997 | Received 24 May 2022, Accepted 05 Jul 2022, Published online: 15 Jul 2022

References

  • Cardellini A, Fasano M, Bozorg Bigdeli M, et al. Thermal transport phenomena in nanoparticle suspensions. J Phys Condens Matter. 2016;28(48):483003.
  • Erol I, Cigerci IH, Ozkara A, et al. Synthesis of Moringa oleifera coated silver-containing nanocomposites of a new methacrylate polymer having pendant fluoroarylketone by hydrothermal technique and investigation of thermal, optical, dielectric and biological properties. J Biomater Sci Polym Ed. 2022;33(10):1231–1255.
  • Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12(1):1–39.
  • Ahmadein M, El-Kady OA, Mohammed MM, et al. Improving the mechanical properties and coefficient of thermal expansion of molybdenum-reinforced copper using powder metallurgy. Mater Res Express. 2021;8(9):096502.
  • Soykan C, Erol I, Kirbag S. Synthesis and characterization of poly(1,3-thiazol-2-yl-carbomoyl) methyl methacrylate: Its metal complexes and antimicrobial activity studies. J Appl Polym Sci. 2003;90(12):3244–3251.
  • Divya K, Jisha M. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018;16(1):101–112.
  • Rabea EI, Badawy MET, Stevens CV, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–1465.
  • Fernandes JC, Tavaria FK, Soares JC, et al. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli in food model systems. Food Microbiol. 2008;25(7):922–928.
  • Wang K, Lin S, Nune KC, et al. Chitosan-gelatin-based microgel for sustained drug delivery. J Biomater Sci Polym Ed. 2016;27(5):441–453.
  • Renbutsu E, Hirose M, Omura Y, et al. Preparation and biocompatibility of novel UV-curable chitosan derivatives. Biomacromolecules. 2005;6(5):2385–2388.
  • Zhang X, Geng X, Jiang H, et al. Synthesis and characteristics of chitin and chitosan with the (2-hydroxy-3-trimethylammonium)propyl functionality, and evaluation of their antioxidant activity in vitro. Carbohydr Polym. 2012;89(2):486–491.
  • Alam MA, Subhan N, Rahman MM, et al. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr. 2014;5(4):404–417.
  • Suarez J, Herrera MD, Marhuenda E. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone. Phytomedicine. 1998;5(6):469–473.
  • Banji OJF, Banji D, Ch K. Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain. Food Chem Toxicol. 2014;74:51–59.
  • Carballo-Villalobos AI, González-Trujano ME, Pellicer F, et al. Antihyperalgesic effect of hesperidin improves with diosmin in experimental neuropathic pain. Biomed Res Int. 2016;2016:8263463.
  • Kuntić V, Brborić J, Holclajtner-Antunović I, et al. Evaluating the bioactive effects of flavonoid hesperidin – a new literature data survey. Vojnosanitetski Pregled. 2014;71:60–65.
  • Polat N, Ciftci O, Cetin A, et al. Toxic effects of systemic cisplatin on rat eyes and the protective effect of hesperidin against this toxicity. Cutan Ocul Toxicol. 2016;35(1):1–7.
  • Balakrishnan K, Casimeer SC, Ghidan AY, et al. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin loaded PLGA nanoparticles. Biointerface Res Appl Chem. 2021;11:14520–14528.
  • Balakrishnan K, Casimeer SC, Ghidan A, et al. Bioformulated hesperidin-loaded PLGA nanoparticles counteract the mitochondrial-mediated intrinsic apoptotic pathway in cancer cells. J Inorg Organomet Polym. 2021;31(1):331–343.
  • Dong W, Wei X, Zhang F, et al. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci Rep. 2014;4:7237.
  • Wu C, Liu Y, Yang Y, et al. Affiliations expand analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766–788.
  • Harun NH, Mydin R, Sreekantan S, et al. The bactericidal potential of LLDPE with TiO2/ZnO nanocomposites against multidrug resistant pathogens associated with hospital acquired infections. J Biomater Sci Polym Ed. 2020;31(14):1757–1769.
  • Goh EG, Xu X, McCormick PG. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr Mater. 2014;78–79:49–52.
  • Singh P, Nanda A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study. Int J Cosmet Sci. 2014;36(3):273–283.
  • Nomoto JI, Hirano T, Miyata T, et al. Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions. Thin Solid Films. 2011;520(5):1400–1406.
  • Ma AM, Gupta M, Chowdhury FR, et al. Zinc oxide thin film transistors with Schottky source barriers. Solid-State Electron. 2012;76:104–108.
  • Abbasi MA, Ibupoto ZH, Hussain M, et al. The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence. Nanoscale Res Lett. 2013;8(1):320.
  • Zhang QF, Dandeneau CS, Zhou XY, et al. ZnO nanostructures for dye-sensitized solar cells. Adv Mater. 2009;21(41):4087–4108.
  • Reshchikov MA, Morkoç H, Nemeth B, et al. Luminescence properties of defects in ZnO. Physica B. 2007;401-402:358–361.
  • Wu W, Chen S, Hu Y, et al. A fluorescent responsive hybrid nanogel for closed-loop control of glucose. J Diabetes Sci Technol. 2012;6(4):892–901.
  • Yadollahi M, Farhoudian S, Barkhordari S, et al. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2016;82:273–278.
  • Dananjaya SHS, Saravana Kumar R, Yang M, et al. Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. Int J Biol Macromol. 2018;108:1281–1288.
  • Kurtuldu F, Kaňková H, Beltrán AM, et al. Anti-inflammatory and antibacterial activities of cerium-containing mesoporous bioactive glass nanoparticles for drug-free biomedical applications. Mater Today Bio. 2021;12:100150.
  • Zhang B, He J, Shi M, et al. Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem Eng J. 2020;400:125994.
  • Souza VGL, Rodrigues C, Valente S, et al. Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings. 2020;10(2):110.
  • Ridwan R, Rihayat T, Suryani S, et al. Combination of poly lactid acid zinc oxide nanocomposite for antimicrobial packaging application. IOP Conf Ser: Mater Sci Eng. 2020;830(4):042018.
  • Rodrigues C, De Mello JMM, Dalcanton F, et al. Mechanical, thermal and antimicrobial properties of chitosan-based-nanocomposite with potential applications for food packaging. J Polym Environ. 2020;28(4):1216–1236.
  • Vaseeharan B, Sivakamavalli J, Thaya R. Synthesis and characterization of chitosan-ZnO composite and its antibiofilm activity against aquatic bacteria. J Compos Mater. 2015;49(2):177–184.
  • Li LH, Deng JC, Deng HR, et al. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994–998.
  • Anandhavelu S, Dhansekaran V, Sethuraman V, et al. Chitin and chitosan based hybrid nanocomposites for super capacitor applications. J Nanosci Nanotechnol. 2017;17(2):1321–1328.
  • Qiu B, Xu XF, Deng RH, et al. Construction of chitosan/ZnO nanocomposite film by in situ precipitation. Int J Biol Macromol. 2019;122:82–87.
  • Abarna B, Preethi T, Rajarajeswari GR. Single-pot solid-state synthesis of ZnO/chitosan composite for photocatalytic and antitumour applications. J Mater Sci: Mater Electron. 2019;30(24):21355–21368.
  • Rahman M, Muraleedaran PK, Mujeeb VMA. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol. 2015;77:266–272.
  • Jayasuriya AC, Aryaei A, Jayatissa AH. ZnO nanoparticles induced effects on nanomechanical behavior and cell viability of chitosan films. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3688–3696.
  • Attia GH, Moemen YS, Youns M, et al. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf B Biointerfaces. 2021;203:111724.
  • Lee J, Choi KH, Min J, et al. Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials. 2017;7(11):365. Basel
  • Choi KH, Nam KC, Lee SY, et al. Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles. Nanomaterials. 2017;7(6):148.
  • Bauer RW, Kirby MDK, Sherris JC, et al. Antibiotic susceptibility testing by standard single disc diffusion method. Am J Clin Pathol. 1966;45:493–496.
  • Hazman Ö, Aksoy L, Büyükben A, et al. Evaluation of antioxidant, cytotoxic, antibacterial effects and mineral levels of Verbascum lasianthum Boiss. ex Bentham. An Acad Bras Cienc. 2021;93(suppl 4):e20210865.
  • Hazman Ö, Evin H, Bozkurt MF, et al. Two faces of arbutin in hepatocellular carcinoma (HepG2) cells: anticarcinogenic effect in high concentration and protective effect against cisplatin toxicity through its antioxidant and anti-inflammatory activity in low concentration. Biologia. 2022;77(1):225–239.
  • Hazman Ö, Sarıova A, Bozkurt MF, et al. The anticarcinogen activity of β-arbutin on MCF-7 cells: stimulation of apoptosis through estrogen receptor-α signal pathway, inflammation and genotoxicity. Mol Cell Biochem. 2021;476(1):349–360.
  • Ersin G, Çelik S, Ulasli SS, et al. Comparison of the anti-inflammatory effects of proanthocyanidin, quercetin, and damnacanthal on benzo(a)pyrene exposed a549 alveolar cell line. Inflammation. 2016;39(2):744–751.
  • Ulasli SS, Celik S, Gunay E, et al. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on a549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pac J Cancer Prev. 2013;14(10):6159–6164.
  • Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–1886.
  • Wu D, Wang W, Tan F, et al. Fabrication of pit-structured ZnO nanorods and their enhanced photocatalytic performance. RSC Adv. 2013;3(43):20054–20059.
  • Heller RB, McGannon J, Weber AH. Precision determination of the lattice constants of zinc oxide. J Appl Phys. 1950;21(12):1283–1284.
  • Sinha A, Sharma P. Preparation of copper powder by glycerol process. Mater Res Bull. 2002;37(3):407–416.
  • Neto CGT, Giacometti JA, Job AE, et al. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62(2):97–103.
  • Britto D, Campana-Filho SP. A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab. 2004;84:353–361.
  • Achilias DS. A review of modeling of diffusion controlled polymerization reactions. Macromol Theory Simul. 2007;16(4):319–347.
  • Javed R, Rais F, Fatima H, et al. Chitosan encapsulated ZnO nanocomposites: Fabrication, characterization, and functionalization of bio-dental approaches. Mater Sci Eng C. 2020;116:111184.
  • Revathi T, Thambidurai S. Immobilization of ZnO on chitosan-neem seed composite for enhanced thermal and antibacterial activity. Adv Powder Technol. 2018;29(6):1445–1454.
  • Saliani M, Jalal J, Kafshdare EG. Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J Microbiol. 2015;8(2):e17115.
  • Jin SE, Jin HE. Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: from physicochemical characteristics to pharmacological aspects. Nanomaterials. 2021;11(2):263.
  • Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia grown blueberries and blackberries. J Agric Food Chem. 2002;50(8):2432–2438.
  • Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med. 2010;49(4):503–515.
  • Huang X, Jiao Y, Zhou C. Impacts of chitosan oligosaccharide (COS) on angiogenic activities. Microvasc Res. 2021;134:104114.
  • Poier N, Hochstöger J, Hackenberg S, et al. Effects of zinc oxide nanoparticles in HUVEC: cyto- and genotoxicity and functional impairment after long-term and repetitive exposure in vitro. Int J Nanomed. 2020;22:4441–4452.
  • Kim GD. Hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. Prev Nutr Food Sci. 2015;20(4):221–229.
  • Chiou CS, Lin JW, Kao PF, et al. Effect of hesperidin on cyclic strain-induced endothelin-1 release in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol. 2008;35(8):938–943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.