104
Views
0
CrossRef citations to date
0
Altmetric
Articles

Self-assembled amphiphilic copolymers–doxorubicin conjugated nanoparticles for gastric cancer therapy with low in vivo toxicity and high efficacy

, , , & ORCID Icon
Pages 2202-2219 | Received 02 May 2022, Accepted 07 Jul 2022, Published online: 08 Aug 2022

References

  • Mendes R, Pedrosa P, Lima JC, et al. Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of gold nanoparticles. Sci Rep. 2017;7(1):10872.[28883606.
  • Zong Y, Wu J, Shen K. Nanoparticle albumin-bound paclitaxel as neoadjuvant chemotherapy of breast cancer: a systematic review and Meta-analysis. Oncotarget. 2017;8(10):17360–17372.
  • Nam J, Son S, Park KS, et al. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4(6):398–414.
  • Gholami A, Mousavi SM, Hashemi SA, et al. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev. 2020;52(1):205–224.[32083952.
  • Y, Huang S, Cole PC, Cai T, et al. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer (review). Oncol Lett. 2016;12(1):11–15.
  • Shrestha B, Tang L, Romero G. Nanoparticles-mediated combination therapies for cancer treatment. Adv Ther. 2019;2(11):1900076.
  • Velpurisiva P, Gad A, Piel B, et al. Nanoparticle design strategies for effective cancer immunotherapy. J Biomed (Syd). 2017;2(2):64–77.
  • Choi JY, Thapa RK, Yong CS, et al. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. J Pharm Investig. 2016;46(4):325–339.
  • Liu Y, Qiao L, Zhang S, et al. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. 2018;66:310–324.
  • Qi S-S, Sun J-H, Yu H-H, et al. Co-delivery nanoparticles of anticancer drugs for improving chemotherapy efficacy. Drug Deliv. 2017;24(1):1909–1926.
  • Xiao B, Ma L, Merlin D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin Drug Deliv. 2017;14(1):65–73.
  • La-Beck NM, Gabizon AA. Nanoparticle interactions with the immune system: clinical implications for liposome-based cancer chemotherapy. Front Immunol. 2017;8:416.
  • Duan X, He C, Kron S, et al. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8( 5):776–791.
  • Shen B, Ma Y, Yu S, et al. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Appl Mater Interfaces. 2016;8(37):24502–24508.
  • Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76–109.
  • Gurunathan S, Kang M-H, Qasim M, et al. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int J Mol Sci. 2018;19(10):3264.
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921–3935.
  • Mangal S, Gao W, Li T, et al. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38(6):782–797.
  • Dubey SK, Kali M, Hejmady S, et al. Recent advances of dendrimers as multifunctional nanocarriers to combat breast cancer. Eur J Pharm Sci. 2021;164:105890.
  • Mishra P, Nayak B, Dey RK. PEGylation in anticancer therapy: an overview. Asian J Pharm Sci. 2016;11(3):337–348.
  • Ferreira Soares DC, Domingues SC, Viana DB, et al. Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed Pharmacother. 2020;131:110695.
  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:1–26.
  • Subhan MA, Torchilin VP. siRNA based drug design, quality, delivery and clinical translation. Nanomedicine. 2020;29:102239.
  • Farjadian F, Moghoofei M, Mirkiani S, et al. Bacterial components as naturally inspired nanocarriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol Adv. 2018;36(4):968–985.
  • Nguyen A, Böttger R, Li S-D. Recent trends in bioresponsive linker technologies of prodrug-based self-assembling nanomaterials. Biomaterials. 2021;275:120955.
  • Yorulmaz Avsar S, Kyropoulou M, Leone SD, et al. Biomolecules turn self-assembling amphiphilic block co-polymer platforms into biomimetic interfaces. Front Chem. 2018;6:645.
  • Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem. 2014;5(5):1529–1544.
  • Kim J, Pramanick S, Lee D, et al. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci. 2015;3(7):1002–1017.
  • Parker JP, Ude Z, Marmion CJ. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anticancer agents to tumours: targeting some of the hallmarks of cancer. Metallomics. 2016;8(1):43–60.
  • Singh RK, Patel KD, Mahapatra C, et al. Combinatory cancer therapeutics with Nanoceria-Capped mesoporous silica nanocarriers through pH-triggered drug release and redox activity. ACS Appl Mater Interfaces. 2019;11(1):288–299.
  • Cheng W, Nie J, Gao N, et al. A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater. 2017;27(45):1704135.
  • Song X, Zhang R, Liang C, et al. Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials. 2015;57:84–92.
  • Elkateb H, Tatham LM, Cauldbeck H, et al. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int J Pharm. 2020;588:119794.
  • Ding D, Li K, Zhu Z, et al. Conjugated polyelectrolyte-cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. Nanoscale. 2011;3(5):1997–2002.
  • Yu S, Zhang X, Tan G, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. 2017;155:208–217.
  • Sato K, Morozumi H, Funayama O, et al. Mechanical properties and oxidation resistance of C–B–Si coated silicon nitride fiber reinforced Si–N–C composites with cross-ply structure. Compos Part A Appl Sci Manuf. 1999;30(4):577–581.
  • Nagaraj K, Velmurugan G, Sakthinathan S, et al. Influence of self-assembly on intercalative DNA binding interaction of double-chain surfactant Co(iii) complexes containing imidazo[4,5-f][1,10]phenanthroline and dipyrido[3,2-d:2′-3′-f]quinoxaline ligands: experimental and theoretical study. Dalton Trans. 2014;43(48):18074–18086.
  • Balaji S, Mohamed Subarkhan MK, Ramesh R, et al. Synthesis and structure of arene Ru(II) N∧O-Chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics. 2020;39(8):1366–1375.
  • Giriraj K, Mohamed Kasim MS, Balasubramaniam K, et al. Various coordination modes of new coumarin schiff bases toward cobalt (III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organomet Chem. 2022;36:e6536.
  • Kalaiarasi G, Subarkhan MM, Fathima Safwana CK, et al. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: Synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorganica Chim Acta. 2022;535:120863.
  • Mohamed Subarkhan MK, Ramesh R, Liu Y. Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem. 2016;40(11):9813–9823.
  • Subarkhan MKM, Ramesh R. Ruthenium(II) arene complexes containing benzhydrazone ligands: Synthesis, structure and antiproliferative activity. Inorg Chem Front. 2016;3(10):1245–1255.
  • Mohamed Kasim MS, Sundar S, Rengan R. Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front. 2018;5(3):585–596.
  • Pilliadugula R, Haribabu J, Mohamed Subarkhan MK, et al. Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J Sci Adv Mater Devices. 2021;6(3):351–363.
  • Wang Y, Jin J, Shu L, et al. New organometallic ruthenium(II) compounds synergistically show cytotoxic, antimetastatic and antiangiogenic activities for the treatment of metastatic cancer. Chemistry. 2020;26(66):15170–15182.
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 2021;50(44):16311–16325.
  • Mohamed Subarkhan MK, Ren L, Xie B, et al. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. 2019;179:246–256
  • Subarkhan MM, Prabhu RN, Kumar RR, et al. Antiproliferative activity of cationic and neutral thiosemicarbazone copper(ii) complexes. RSC Adv. 2016;6(30):25082–25093.
  • Moro H, Hattori N, Nakamura Y, et al. Epigenetic priming sensitizes gastric cancer cells to irinotecan and cisplatin by restoring multiple pathways. Gastric Cancer. 2020;23(1):105–115.
  • Chen Y-R, Juan H-F, Huang H-C, et al. Quantitative proteomic and genomic profiling reveals Metastasis-Related protein expression patterns in gastric cancer cells. J Proteome Res. 2006;5(10):2727–2742.
  • Wang X-P, Wang Q-X, Lin H-P, et al. Antitumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct. 2017;8(9):3319–3326.
  • Huxford-Phillips RC, Russell SR, Liu D, et al. Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. RSC Adv. 2013;3(34):14438–14443.
  • Han W, Shi L, Ren L, et al. A nanomedicine approach enables co-delivery of cyclosporin a and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther. 2018;3:1–10.
  • Huang Y, He Y, Huang Z, et al. Coordination self-assembly of platinum-bisphosphonate polymer-metal complex nanoparticles for cisplatin delivery and effective cancer therapy. Nanoscale. 2017;9(28):10002–10019.
  • Hu Y, Yu D, Zhang X. 9-Amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochem. 2021;100:140–148.
  • Kasibhatla S, Amarante-Mendes GP, Finucane D, et al. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb Protoc. 2006;2006(3):pdb.prot4493.
  • Liu K, Liu P, Liu R, et al. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res. 2015;21:15–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.