361
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nanofabrication of PLGA-PEG-chitosan-folic acid systems for delivery of colchicine to HT-29 cancer cells

, , ORCID Icon, , &
Pages 1-17 | Received 15 Apr 2022, Accepted 20 Jul 2022, Published online: 28 Jul 2022

References

  • AbouAitah K, Hassan HA, Swiderska-Sroda A, et al. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers. 2020;12(1):144.
  • Sampedro-Núñez M, Serrano-Somavilla A, Adrados M, et al. Analysis of expression of the PD-1/PD-L1 immune checkpoint system and its prognostic impact in gastroenteropancreatic neuroendocrine tumors. Sci Rep. 2018;8(1):1–11.
  • Kumar A, Sharma PR, Mondhe DM. Potential anticancer role of colchicine-based derivatives: an overview. Anticancer Drugs. 2017;28(3):250–262.
  • Kumar A, Singh B, Sharma PR, et al. A novel microtubule depolymerizing colchicine analogue triggers apoptosis and autophagy in HCT‐116 colon cancer cells. Cell Biochem Funct. 2016;34(2):69–81.
  • Choi A-R, Kim J-H, Cheon JH, et al. Attenuation of colchicine toxicity in drug-resistant cancer cells by co-treatment with anti-malarial drugs. Anticancer Res. 2016;36(11):5859–5866.
  • Banerjee A, Pathak S, Subramanium VD, et al. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov Today. 2017;22(8):1224–1232.
  • AbouAitah K, Swiderska-Sroda A, Farghali AA, et al. Folic acid–conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget. 2018;9(41):26466–26490.
  • Shahein SA, Aboul-Enein AM, Higazy IM, et al. Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release. Int J Nanomed. 2019;14:5503–5526.
  • Senapati S, Mahanta AK, Kumar S, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7–19.
  • Essa D, Choonara YE, Kondiah PPD, et al. Comparative nanofabrication of PLGA-chitosan-PEG systems employing microfluidics and emulsification solvent evaporation techniques. Polymers. 2020;12(9):1882.
  • Dahman Y. Poly (lactic acid): green and sustainable plastics. Ferment Technol. 2014;2(1):1–2.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–3659.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397.
  • Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1260.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.
  • Villemin E, Ong YC, Thomas CM, et al. Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nat Rev Chem. 2019;3(4):261–282.
  • Kravanja G, Primožič M, Knez Ž, et al. Chitosan-based (nano) materials for novel biomedical applications. Molecules. 2019;24(10):1960.
  • Wang W, Meng Q, Li Q, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487.
  • Frank LA, Onzi GR, Morawski AS, et al. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym. 2020;147:104459.
  • Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol. 2011;670(2–3):372–383.
  • Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018;9(4):790–810.
  • Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev. 2004;56(8):1099–1109.
  • Chen X-m, Liu J, Wang T, et al. Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways. Toxicol In Vitro. 2012;26(5):649–655.
  • Huang Z, Xu Y, Peng W. Colchicine induces apoptosis in HT‐29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways. Mol Med Rep. 2015;12(4):5939–5944.
  • Zhang T, Chen W, Jiang X, et al. Anticancer effects and underlying mechanism of colchicine on human gastric cancer cell lines in vitro and in vivo. Biosci Rep. 2019;39(1):1–10.
  • Dhas NL, Ige PP, Kudarha RR. Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technol. 2015;283:234–245.
  • Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–89.
  • Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine. 2012;7(10):1577–1590.
  • Ho HN, Tran TH, Tran TB, et al. Optimization and characterization of artesunate-loaded chitosan-decorated poly(d,l-lactide-co-glycolide) acid nanoparticles. J Nanomater. 2015;2015:1–12.
  • Mahmood S, Kiong KC, Tham CS, et al. PEGylated lipid polymeric nanoparticle-encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 2020;21(7):1–15.
  • Vrandečić NS, Erceg M, Jakić M, et al. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochim Acta. 2010;498(1-2):71–80.
  • Lu B, Lv X, Le Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers. 2019;11(2):304.
  • Abdul Rahim R, Jayusman PA, Muhammad N, et al. Recent advances in nanoencapsulation systems using PLGA of bioactive phenolics for protection against chronic diseases. Int J Environ Res Public Health. 2019;16(24):4962.
  • Alhajamee M, Marai K, Al Abbas SMN, et al. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Mater Technol. 2022;37(9):1183–1112.
  • Esfanjani AF, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces. 2016;146:532–543.
  • Rahmati A, Homayouni Tabrizi M, Karimi E, et al. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. J Biomater Sci Polym Ed. 2022;33(10):1289–1217.
  • Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715–728.
  • Amoozgar Z, Park J, Lin Q, et al. Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol Pharm. 2012;9(5):1262–1270.
  • Abouelmagd SA, Ku YJ, Yeo Y. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. J Drug Target. 2015;23(7–8):725–735.
  • Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials. 2018;11(7):1154.
  • Wu J, Zhao C, Lin W, et al. Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. J Mater Chem B. 2014;2(20):2983–2992.
  • Zhou H, Fan Z, Li PY, et al. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano. 2018;12(10):10130–10141.
  • Cohen-Sela E, Teitlboim S, Chorny M, et al. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci. 2009;98(4):1452–1462.
  • Shabestarian H, Homayouni Tabrizi M, Movahedi M, et al. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. J Microencapsul. 2021;38(5):324–337.
  • Pannu GK, El-Safy A, Girgis S, et al. Formulation of insulin-loaded nanoparticles by using double emulsion/solvent evaporation method and microfluidics/salting out technique. Am J Sustain Cities Soc. 2019;1(8):7–36.
  • Chigumira W, Maposa P, Gadaga LL, et al. Preparation and evaluation of pralidoxime-loaded PLGA nanoparticles as potential carriers of the drug across the blood brain barrier. J Nanomater. 2015;2015:1–5.
  • Nguyen CN, Tran BN, Thi HN, et al. Physical absorption of folic acid and chitosan on dihydroartemisinin-loaded poly-lactic-co-glycolic acid nanoparticles via electrostatic interaction for their enhanced uptake and anticancer effect. J Nanomater. 2019;2019:1–14.
  • Gupta R, Dudani A. Mechanism of action of antimitotic drugs: a new hypothesis based on the role of cellular calcium. Med Hypotheses. 1989;28(1):57–69.
  • Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill cancer cells? J Cell Sci. 2009;122(Pt 15):2579–2585.
  • Castedo M, Perfettini J-L, Roumier T, et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004;23(16):2825–2837.
  • Qi C, Wang X, Shen Z, et al. Anti-mitotic chemotherapeutics promote apoptosis through TL1A-activated death receptor 3 in cancer cells. Cell Res. 2018;28(5):544–555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.