288
Views
1
CrossRef citations to date
0
Altmetric
Article

Targeted delivery and anticancer effects of Chrysin-loaded chitosan-folic acid coated solid lipid nanoparticles in pancreatic malignant cells

, ORCID Icon, , &
Pages 315-333 | Received 21 Jul 2022, Accepted 02 Sep 2022, Published online: 12 Sep 2022

References

  • Nedelcu A, Mocan T, Grapa C, et al. Recent advances in Nanoparticle-Mediated diagnosis and the treatment of pancreatic cancer. Int J Mol Sci. 2021;22(15):8060.
  • Aslan M, Shahbazi R, Ulubayram K, et al. Targeted therapies for pancreatic cancer and hurdles ahead. Anticancer Res. 2018;38(12):6591–6606.
  • Neesse A, Algül H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut. 2015;64(9):1476–1484.
  • Bahmani B, Uehara M, Ordikhani F, et al. Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: a unique site for targeted delivery. EBioMedicine. 2018;38:79–88.
  • Khan AS, Shah KU, Mohaini MA, et al. Tacrolimus-loaded solid lipid nanoparticle gel: formulation development and in vitro assessment for topical applications. Gels. 2022;8(2):129.
  • Anik MI, Hossain MK, Hossain I, et al. Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select. 2021;2(6):1146–1186.
  • Basha SK, Dhandayuthabani R, Syed Muzammil M, et al. Solid lipid nanoparticles for oral drug delivery. Mater Today Proc. 2021;36:313–324.
  • Alajami HN, Fouad EA, Ashour AE, et al. Celecoxib-Loaded solid lipid nanoparticles for Colon delivery: formulation optimization and in vitro assessment of anti-Cancer activity. Pharmaceutics. 2022;14(1):131.
  • Arduino I, Liu Z, Rahikkala A, et al. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomater. 2021;121:566–578.
  • Albekery M, Alharbi K, Alarifi S, et al. Optimization of a nanostructured lipid carriers system for enhancing the biopharmaceutical properties of valsartan. Digest J Nanomater Biostruct. 2017;12(2):381–389.
  • Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997.
  • Kaur R, Sharma N, Tikoo K, et al. Development of mirtazapine loaded solid lipid nanoparticles for topical delivery: optimization, characterization and cytotoxicity evaluation. Int J Pharm. 2020;586:119439.
  • Mabrouk Zayed MM, Sahyon HA, Hanafy NAN, et al. The effect of encapsulated apigenin nanoparticles on HePG-2 cells through regulation of P53. Pharmaceutics. 2022;14(6):1160.
  • Wang JY, Wang Y, Meng X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett. 2016;11(1):1–8.
  • Kamel KM, Khalil IA, Rateb ME, et al. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J Agric Food Chem. 2017;65(36):7966–7981.
  • Hanafy NAN, Leporatti S, El-Kemary M. Mucoadhesive curcumin crosslinked carboxy methyl cellulose might increase inhibitory efficiency for liver cancer treatment. Mater Sci Eng C Mater Biol Appl. 2020;116:111119.
  • Mahmud N, Anik MI, Hossain MK, et al. Advances in Nanomaterial-Based platforms to combat COVID-19: Diagnostics, preventions, therapeutics, and vaccine developments. ACS Appl Bio Mater. 2022;5(6):2431–2460.
  • Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18.
  • Hossain MK, Khan MI, El-Denglawey A. A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl Mater Today. 2021;24:101104.
  • Khan MI, Hossain MI, Hossain MK, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater. 2022;5(3):971–1012.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 2). Trop J Pharm Res. 2013;12(2):265–273.
  • Hanafy NA, Leporatti S, El-Kemary MA. Extraction of chlorophyll and carotenoids loaded into chitosan as potential targeted therapy and bio imaging agents for breast carcinoma. Int J Biol Macromol. 2021;182:1150–1160.
  • Rahmati A, Homayouni Tabrizi M, Karimi E, et al. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in Colon cancer. J Biomater Sci Polymer Ed. 2022;33(10):1289–1307.
  • Feng SS. Targeting and imaging cancer cells by Folate-Decorated, quantum dots–loaded nanoparticles of biodegradable polymers, in chemotherapeutic engineering. Singapore: Jenny Stanford Publishing; 2014. p. 588–607.
  • Dhas NL, Ige PP, Kudarha RR. Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technol. 2015;283:234–245.
  • Wang YY, Li L, Liu XJ, et al. Development of a novel multi-functional integrated bioconjugate effectively targeting K-Ras mutant pancreatic cancer. J Pharm Anal. 2022;12(2):232–242.
  • Hanafy NA. Optimally designed theranostic system based folic acids and chitosan as a promising mucoadhesive delivery system for encapsulating curcumin LbL nano-template against invasiveness of breast cancer. Int J Biol Macromol. 2021;182:1981–1993.
  • Song H, Su C, Cui W, et al. Folic Acid-Chitosan conjugated nanoparticles for improving Tumor-Targeted drug delivery. BioMed Res Int. 2013;2013:723158.
  • Cheng L, Ma H, Shao M, et al. Synthesis of folate-chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol Med Rep. 2017;16(2):1101–1108.
  • Ting P, Srinuanchai W, Suttisansanee U, et al. Development of chrysin loaded oil-in-Water nanoemulsion for improving bioaccessibility. Foods. 2021;10(8):1912.
  • Hussain H, L SR, Ahmad S, et al. Determination of cell viability using acridine orange/propidium iodide dual-spectrofluorometry assay. Cogent Food Agric. 2019;5(1):1582398.
  • Hezel M, Ebrahimi F, Koch M, et al. Propidium iodide staining: a new application in fluorescence microscopy for analysis of cytoarchitecture in adult and developing rodent brain. Micron. 2012;43(10):1031–1038.
  • Haider M, Abdin SM, Kamal L, et al. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020;12(3):288.
  • Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. Aaps Pharmscitech. 2013;14(2):585–592.
  • Moghimi SM, Hunter A, Andresen T. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 2012;52(1):481–503.
  • Truong NP, Whittaker MR, Mak CW, et al. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv. 2015;12(1):129–142.
  • Lu B, Lv X, Le Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers. 2019;11(2):304.
  • Jalilian AR, Hosseini-Salekdeh SL, Mahmoudi M, et al. Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats. J Radioanal Nucl Chem. 2011;287(1):119–127.
  • Abbasalipo R, Fallah M, Sedighi F, et al. Nanocapsulation of nitazoxanide in solid lipid nanoparticles as a new drug delivery system and in vitro release study. J Biol Sci. 2016;16(4):120–127.
  • Abdul Rahim R, Jayusman PA, Muhammad N, et al. Recent advances in nanoencapsulation systems using PLGA of bioactive phenolics for protection against chronic diseases. Int J Environ Res Public Health. 2019;16(24):4962.
  • Alhajamee M, Marai K, Al Abbas SMN, et al. Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Mater Technol. 2022;37(9):1183–1194.
  • Ganesan P, Ramalingam P, Karthivashan G, et al. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine. 2018;13:1569–1583.
  • Sadat Khadem F, Es-Haghi A, Homayouni Tabrizi M, et al. The loaded ferula assa-foetida seed essential oil in solid lipid nanoparticles (FSEO-SLN) as the strong apoptosis inducer agents in human NTERA-2 embryocarcinoma cells. Mater Technol. 2022;37(9):1120–1128.
  • Singh B, Vuddanda PR, M R V, et al. Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm. Colloid Surf B Biointerfaces. 2014;121:92–98.
  • Trucillo P, Campardelli R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J Supercritic Fluids. 2019;143:16–23.
  • Andrade LN, Oliveira DML, Chaud MV, et al. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: physicochemical characterization, release profile, and cytotoxicity. Molecules. 2019;24(21):3881.
  • Pizzol CD, Filippin-Monteiro FB, Restrepo JAS, et al. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int J Environ Res Public Health. 2014;11(8):8581–8596.
  • Küchler S, Herrmann W, Panek-Minkin G, et al. SLN for topical application in skin diseases—characterization of drug–carrier and carrier–target interactions. Int J Pharm. 2010;390(2):225–233.
  • Rahiminejad A, Dinarvand R, Johari B, et al. Preparation and investigation of indirubin‐loaded SLN nanoparticles and their anti‐cancer effects on human glioblastoma U87MG cells. Cell Biol Int. 2019;43(1):2–11.
  • Ying XY, Cui D, Yu L, et al. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr Polym. 2011;84(4):1357–1364.
  • Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotechnol. 2018;46(6):1236–1247.
  • Mistry BM, Patel RV, Keum YS, et al. Chrysin–benzothiazole conjugates as antioxidant and anticancer agents. Bioorg Med Chem Lett. 2015;25(23):5561–5565.
  • Patel RV, Mistry B, Syed R, et al. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur J Pharm Sci. 2016;88:166–177.
  • Roy S, Sil A, Chakraborty T. Potentiating apoptosis and modulation of p53, Bcl2, and bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol. 2019;234(4):4888–4909.
  • Li X, Wang JN, Huang JM, et al. Chrysin promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines. Toxicol in Vitro. 2011;25(3):630–635.
  • Jia WZ, Zhao JC, Sun XL, et al. Additive anticancer effects of chrysin and low dose cisplatin in human malignant glioma cell (U87) proliferation and evaluation of the mechanistic pathway. J Buon. 2015;20(5):1327–1336.
  • Lin CM, Chang H, Li SY, et al. Chrysin inhibits lipopolysaccharide-induced angiogenesis via down-regulation of VEGF/VEGFR-2 (KDR) and IL-6/IL-6R pathways. Planta Med. 2006;72(8):708–714.
  • Liao ZY, Liang IC, Li HJ, et al. Chrysin inhibits high glucose-induced migration on chorioretinal endothelial cells via VEGF and VEGFR down-regulation. Int J Mol Sci. 2020;21(15):5541.
  • Lin CM, Shyu KG, Wang BW, et al. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: an in vitro and in ovo approach. J Agric Food Chem. 2010;58(11):7082–7087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.