342
Views
3
CrossRef citations to date
0
Altmetric
Article

A dual synergistic effect of titanium and curcumin co-embedded on extracellular matrix hydrogels of decellularized bone: Potential application in osteoblastic differentiation of adipose-derived mesenchymal stem cells

ORCID Icon, & ORCID Icon
Pages 372-397 | Received 22 Jun 2022, Accepted 07 Sep 2022, Published online: 02 Oct 2022

Refrences

  • Sun J, Lyu J, Xing F, et al. A biphasic, demineralized, and decellularized allograft bone‐hydrogel scaffold with a cell‐based BMP‐7 delivery system for osteochondral defect regeneration. J Biomed Mater Res A. 2020;108(9):1909–1921.
  • Jiang Y, Li R, Han C, et al. Extracellular matrix grafts: from preparation to application. Int J Mol Med. 2021;47(2):463–474.
  • Zamani R, Aval SF, Pilehvar-Soltanahmadi Y, et al. Recent advances in cell electrospining of natural and synthetic nanofibers for regenerative medicine. Drug Res (Stuttg). 2018;68(8):425–435.
  • Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem. 2022;124(1):151841.
  • Beachley V, Ma G, Papadimitriou C, et al. Extracellular matrix particle–glycosaminoglycan composite hydrogels for regenerative medicine applications. J Biomed Mater Res A. 2018;106(1):147–159.
  • Liu C, Miller H, Sharma S, et al. Analyzing actin dynamics during the activation of the B cell receptor in live B cells. Biochem Biophys Res Commun. 2012;427(1):202–206.
  • Lee MS, Lee DH, Jeon J, et al. Biofabrication and application of decellularized bone extracellular matrix for effective bone regeneration. J Ind Eng Chem. 2020;83:323–332.
  • Kim YS, Majid M, Melchiorri AJ, et al. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2019;4(1):83–95.
  • Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng. 2022;16(1):1–18.
  • Claudio-Rizo JA, et al. Decellularized ECM-derived hydrogels: modification and properties. Hydrogels. 2018;1:1–22.
  • Saldin LT, Cramer MC, Velankar SS, et al. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.
  • Hanawa T. Titanium–tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol. 2019;7:170.
  • Pirmoradi S, Fathi E, Farahzadi R, et al. Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res (Stuttg). 2018;68(04):213–221.
  • Seifi M, et al. Effect of curcumin on odontogenic/osteogenic differentiation of dental pulp stem cells. J Regen Reconstruct Restor (Triple R). 5:e13:5–13.
  • Beyene AM, Moniruzzaman M, Karthikeyan A, et al. Curcumin nanoformulations with metal oxide nanomaterials for biomedical applications. Nanomaterials. 2021;11(2):460.
  • Bao X, Zhu L, Huang X, et al. 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep. 2017;7(1):1–13.
  • Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, et al. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother. 2017;90:85–92.
  • Nagaishi K, Mizue Y, Chikenji T, et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep. 2017;7(1):1–17.
  • Pourpirali R, Mahmoudnezhad A, Oroojalian F, et al. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.
  • Tihan GT, Sereanu V, Meghea A, et al. Innovative methodology for developing a bone grafting composite biomaterial starting from the seashell of Rapana thomasiana. CR Chim. 2017;20(4):440–445.
  • Rasouli S, Montazeri M, Mashayekhi S, et al. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of curcumin and chrysin: Possible application in prevention of breast cancer local recurrence. J Drug Delivery Sci Technol. 2020;55:101402.
  • Dadashpour M, Pilehvar-Soltanahmadi Y, Mohammadi SA, et al. Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells. Artif Cells Nanomed Biotechnol. 2018;46(4):819–830.
  • Varaprasad K, Jayaramudu T, Sadiku ER. Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr Polym. 2017;164:186–194.
  • Yue S, He H, Li B, et al. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials. 2020;10(8):1511.
  • Fernández-Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019;9(1):1–12.
  • Datta S, Rameshbabu AP, Bankoti K, et al. Decellularized bone matrix/oleoyl chitosan derived supramolecular injectable hydrogel promotes efficient bone integration. Mater Sci Eng C Mater Biol Appl. 2021;119:111604.
  • Sha B, Gao W, Wang S, et al. Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat. Compos Part B: Engin. 2011;42(8):2136–2144.
  • Eagle M, Rooney P, Kearney J. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents. Cell Tissue Bank. 2015;16(3):433–441.
  • Tsou Y-H, Khoneisser J, Huang P-C, et al. Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater. 2016;1(1):39–55.
  • Theivasanthi T, Alagar M. Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight; 2013. arXiv preprint arXiv:1307.1091:1–10.
  • Amiryaghoubi N, Noroozi Pesyan N, Fathi M, et al. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Int J Biol Macromol. 2020;162:1338–1357.
  • Chen L, Xiong Z, Xiong H, et al. Effects of nano-TiO2 on bonding performance, structure stability and film-forming properties of starch-g-VAc based wood adhesive. Carbohydr Polym. 2018;200:477–486.
  • Nugraheni AD, Purnawati D, Rohmatillah A, et al. Swelling of PVA/chitosan/TiO2 nanofibers membrane in different pH. MSF. 2020;990:220–224.
  • Persson M, Lehenkari PP, Berglin L, et al. Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep. 2018;8(1):1–12.
  • Kaivosoja E, Barreto G, Levón K, et al. Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med. 2012;44(7):635–650.
  • Alipour M, Firouzi N, Aghazadeh Z, et al. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021;21(1):6–12.
  • Urruela-Barrios R, Ramírez-Cedillo E, Díaz de León A, et al. Alginate/gelatin hydrogels reinforced with TiO2 and β-TCP fabricated by microextrusion-based printing for tissue regeneration. Polymers. 2019;11(3):457.
  • Anaya-Esparza LM, Villagrán-de la Mora Z, Ruvalcaba-Gómez JM, et al. Use of titanium dioxide (TiO2) nanoparticles as reinforcement agent of polysaccharide-based materials. Processes. 2020;8(11):1395.
  • Ren Y, Feng X, Lang X, et al. Evaluation of osteogenic potentials of titanium dioxide nanoparticles with different sizes and shapes. J Nanomater. 2020;2020:1–13.
  • Mirzaei A, Saburi E, Enderami SE, et al. Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. Artif Cells Nanomed Biotechnol. 2019;47(1):3058–3066.
  • Hosseini FS, Enderami SE, Hadian A, et al. Efficient osteogenic differentiation of the dental pulp stem cells on β‐glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. J Cell Physiol. 2019;234(8):13951–13958.
  • Chen S, et al. Curcumin modulates the crosstalk between macrophages and bone mesenchymal stem cells to ameliorate osteogenesis. Front Cell Dev Biol. 2021;9:27.
  • Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, et al. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep. 2020;10(1):1–15.
  • Gorabi AM, Kiaie N, Hajighasemi S, et al. The effect of curcumin on the differentiation of mesenchymal stem cells into mesodermal lineage. Molecules. 2019;24(22):4029.
  • Tan H-L, Teow S-Y, Pushpamalar J. Application of metal nanoparticle–hydrogel composites in tissue regeneration. Bioengineering. 2019;6(1):17.
  • Si J, Zhang J, Liu S, et al. Characterization of a micro-roughened TiO2/ZrO2 coating: mechanical properties and HBMSC responses in vitro. Acta Biochim Biophys Sin (Shanghai). 2014;46(7):572–581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.