170
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Approaches for designing and delivering solid lipid nanoparticles of distinct antitubercular drugs

&
Pages 828-843 | Received 11 Jul 2022, Accepted 03 Nov 2022, Published online: 15 Nov 2022

References

  • Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res. 2021;11(3):1218–1235.
  • Koch A, Mizrahi V. Mycobacterium tuberculosis, Trends Microbiol. 2018;26(6):555–556.
  • Fennelly KP, Jones-López EC. Quantity and quality of inhaled dose predicts immunopathology in tuberculosis. Front Immunol. 2015;6:313.
  • Patil K, Bagade S, Bonde S, et al. Saraogi, biomedicine & pharmacotherapy recent therapeutic approaches for the management of tuberculosis: challenges and opportunities. Biomed Pharmacother. 2018;99:735–745.
  • Petersen E, Al-Abri S, Chakaya J, et al. World TB day 2022: revamping and reshaping global TB control programs by advancing lessons learnt from the COVID-19 pandemic. Int J Infect Dis. 2022. https://www.ijidonline.com/action/showPdf?pii=S1201-9712%2822%2900138-2
  • Mehta SK, Jindal N. Formulation of tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf B Biointerfaces. 2013;101:434–441.
  • Silva LB, Veigas B, Doria G, et al. Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosens Bioelectron. 2011;26(5):2012–2017.
  • Banyal S, Malik P, Tuli HS, et al. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr Opin Pulm Med. 2013;19(3):289–297.
  • Maddiboyina B, Jhawat V, Nakkala RK, Desu PK, Gandhi S. Design expert assisted formulation, characterization and optimization of microemulsion based solid lipid nanoparticles of repaglinide. Prog Biomater. 2021;10(4):309–320.
  • Raviglione M, Marais B, Floyd K, et al. Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet. 2012;379(9829):1902–1913.
  • Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release. 2014;184:36–50.
  • Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191–121.
  • Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Pharmaceutics. 2021;11(3):1218–1235.
  • Maddina BY, Asthana GS, Asthana A. Formulation and development of polysaccharide based mesalamine nanoparticles. Int J Pharm Clin Res. 2016;8(7):676–684.
  • Giri A, Sheikh A, Tathe PR, et al. Solid lipid nanoparticles: a brief review. Int J Adv Res Sci Commun Technol. 2021;7(2):368–385.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Maddiboyina B, Shanmugapriya J, Rasala S, et al. Bioinspired nanomaterials for drug delivery. In: Bioinspired nanomaterials: synthesis and emerging applications. Materials Research Forum LLC; 2021. p. 63–95.
  • Jhawat V, Gulia M, Maddiboyina B, et al. Fate and applications of superporous hydrogel systems: a review. Curr Nanomed. 2020;10(4):326–341.
  • Garg AK, Maddiboyina B, Alqarni MH, et al. Solubility enhancement, formulation development and antifungal activity of luliconazole niosomal gel-based system. J Biomater Sci Polym Ed. 2021;32(8):1009–1023.
  • Mirchandani Y, Patravale VB, Brijesh S. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021;335:457–464.
  • Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C. 2016;68:982–994.
  • Bonilla L, Espina M, Severino P, et al. Lipid nanoparticles for the posterior eye segment. Pharmaceutics. 2021;14(1):90.
  • Ezzati J, Dolatabadi N, Valizadeh H, et al. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5(2):151–159.
  • Maddiboyina B, Hanumanaik M, Nakkala RK, et al. Formulation and evaluation of gastro-retentive floating bilayer tablet for the treatment of hypertension. Heliyon. 2020;6(11):e05459.
  • Ebrahimi HA, Javadzadeh Y, Hamidi M, et al. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. DARU J Pharm Sci. 2015;23(1):1–11.
  • Parhi R, Suresh P. Preparation and characterization of solid lipid nanoparticles – a review. Curr Drug Discov Technol. 2012;9(1):2–16.
  • Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199(2):167–177.
  • Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005;27(2):127–144.
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–358.
  • Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37–56.
  • Gulbake A, Jain A, Khare P, et al. Solid lipid nanoparticles bearing oxybenzone: in-vitro and in-vivo evaluation. J Microencapsul. 2010;27(3):226–233.
  • Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev. 2008;60(3):299–327.
  • Pooja D, Tunki L, Kulhari H, et al. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief. 2016;6:15–19.
  • Naguib YW, Rodriguez BL, Li X, et al. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol Pharm. 2014;11(4):1239–1249.
  • Freitas C, Müller RH. Spray-drying of solid lipid nanoparticles (SLNTM). Eur J Pharm Biopharm. 1998;46(2):145–151.
  • Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125–131.
  • Bhattacharjee S, Debnath R, Kumar SA, et al. A technical review: solid-lipid nanoparticle (SLN), their characteristics and their preparation. Asian J Pharm Res Dev. 2020;8(3):185–189.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.
  • Müller RH. Zetapotential und Partikelladung in der Laborpraxis. Paperb. Apv; 1996.
  • Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): method, characterization and applications. Int Curr Pharm J. 2012;1(11):384–393.
  • Kotla NG, Burke O, Pandit A, et al. An orally administrated hyaluronan functionalized polymeric hybrid nanoparticle system for colon-specific drug delivery. Nanomaterials. 2019;9(9):1246–1214.
  • Kotla NG, Gulati M, Singh SK, et al. Facts, fallacies and future of dissolution testing of polysaccharide based colon-specific drug delivery. J Control Release. 2014;178:55–62.
  • Müller RH, Runge SA, Ravelli V, et al. Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug-lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 2008;68(3):535–544.
  • Buya AB, Witika BA, Bapolisi AM, et al. Application of lipid-based nanocarriers for antitubercular drug delivery: a review. Pharmaceutics. 2021;13(12):2041.
  • Khatak S, Mehta M, Awasthi R, et al. Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis. 2020;125:102008.
  • Banerjee S, Roy S, Bhaumik KN, et al. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. J Drug Target. 2020;28(1):55–69.
  • Chuan J, Li Y, Yang L, et al. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J Nanopart Res. 2013;15(5):1–9.
  • Kelly C, Jefferies C, Cryan S-A. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241.
  • Gaspar DP, Faria V, Gonçalves LMD, et al. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: physicochemical and in vitro studies. Int J Pharm. 2016;497(1–2):199–209.
  • Maretti E, Rossi T, Bondi M, et al. Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis. Int J Pharm. 2014;462(1–2):74–82.
  • Aboutaleb E, Noori M, Gandomi N, et al. Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int Nano Lett. 2012;2(1):1–8.
  • Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis. 2005;85(4):227–234.
  • Nemati E, Mokhtarzadeh A, Panahi-Azar V, et al. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech. 2019;20(3):120.
  • Garcia-Contreras L, Fiegel J, Telko MJ, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother. 2007;51(8):2830–2836.
  • Kumar M, Kakkar V, Mishra AK, et al. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. Int J Pharm. 2014;461(1–2):223–233.
  • Shah S, Shah N, Amin S, et al. Studies in development and statistical optimization of levofloxacin solid lipid nanoparticles for the treatment of tuberculosis. J Pharm Innov. 2022;18(6):779–793.
  • Elbrink K, Van Hees S, Chamanza R, et al. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2021;163:158–170.
  • Mizoe T, Ozeki T, Okada H. Application of a four-fluid nozzle spray drier to prepare inhalable rifampicin-containing mannitol microparticles. AAPS PharmSciTech. 2008;9(3):755–761.
  • Maddiboyina B, Desu PK, Vasam M, et al. An insight of nanogels as novel drug delivery system with potential hybrid nanogel applications. J Biomater Sci Polym Ed. 2022;33(2):262–278.
  • Contri RV, Fiel LA, Alnasif N, et al. Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm. 2016;507(1–2):12–20.
  • Kelidari HR, Saeedi M, Akbari J, et al. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2015;128:473–479.
  • Hussain A, Altamimi MA, Alshehri S, et al. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int J Nanomed. 2020;15:1073–1094.
  • Silva AC, Kumar A, Wild W, et al. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. Int J Pharm. 2012;436(1–2):798–805.
  • Negi JS, Chattopadhyay P, Sharma AK, et al. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci. 2013;48(1–2):231–239.
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999;59(3):299–307.
  • del Pozo-Rodríguez A, Pujals S, Delgado D, et al. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release. 2009;133(1):52–59.
  • Maddiboyina B, Jhawat V, Desu PK, et al. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J Biomater Sci Polym Ed. 2021;32(12):1584–1597.
  • Obinu A, Porcu EP, Piras S, et al. Solid lipid nanoparticles as formulative strategy to increase oral permeation of a molecule active in multidrug-resistant tuberculosis management. Pharmaceutics. 2020;12(12):1132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.