473
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Critical review on the developments in polymer composite materials for biomedical implants

, & ORCID Icon
Pages 893-917 | Received 11 Aug 2022, Accepted 07 Nov 2022, Published online: 18 Nov 2022

References

  • Zagho MM, Hussein EA, Elzatahry AA. Recent overviews in functional polymer composites for biomedical applications. Polymer 2018;10(7):739.
  • Toh HW, Toong DWY, Ng JCK, et al. Polymer blends and polymer composites for cardiovascular implants. Eur Polym J. 2021;146:110249.
  • Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. J Biomater Sci Polym Ed. 2022;33:342–408.
  • Han GR, Koo HJ, Ki H, et al. Paper/soluble polymer hybrid-based lateral flow biosensing platform for high-performance point-of-Care testing. ACS Appl Mater Interfaces. 2020;12(31):34564–34575.
  • Cheng J, Amin D, Latona J, et al. Supramolecular polymer hydrogels for drug-induced tissue regeneration. ACS Nano. 2019;13(5):5493–5501.
  • Choi JR, Lee JH, Xu A, et al. Monolithic hydrogel nanowells-in-microwells enabling simultaneous single cell secretion and phenotype analysis. Lab Chip. 2020;20(24):4539–4551.
  • Sharma D, Satapathy BK. 2022;62:439–484.
  • Basak S. 2021;58:579–593.
  • Carfì Pavia F, Conoscenti G, Greco S, et al. Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol. 2018;119:945–953.
  • Heidari BS, Davachi SM, Moghaddam AH, et al. Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior. J Mech Behav Biomed Mater. 2018;81:95–105.
  • Sandeep Kumar Y, Rajeswara Rao KVS, Sunil RY. Int J Eng. 2020;33:1560–1566.
  • Kadambi P, Luniya P, Dhatrak P. Current advancements in polymer/polymer matrix composites for dental implants: a systematic review. Mater.Today Proc. 2021;46:740–745.
  • Gerasimenko AY, Kurilova UE, Savelyev MS, et al. Laser fabrication of composite layers from biopolymers with branched 3D networks of single-walled carbon nanotubes for cardiovascular implants. Compos. Struct. 2021;260:113517.
  • Trombino S, Curcio F, Cassano R, et al. Pharmary 2021;13:1038.
  • Dai W, Yang Y, Yang Y, et al. Material advancement in tissue-engineered nerve conduit. Nanotechnol Rev. 2021;10(1):488–503.
  • Si J, Yang Y, Xing X, et al. Controlled degradable chitosan/collagen composite scaffolds for application in nerve tissue regeneration. Polym Degrad Stab. 2019;166:73–85.
  • Peixoto T, Paiva MC, Marques AT, et al. Potential of graphene–polymer composites for ligament and tendon repair: a review. Adv Eng Mater. 2020;22(12):2000492.
  • Wang P, Wang H, Ma K, et al. Novel cytokine-loaded PCL-PEG scaffold composites for spinal cord injury repair. RSC Adv. 2020;10(11):6306–6314.
  • Okulov AV, Volegov AS, Weissmüller J, et al. Dealloying-based metal-polymer composites for biomedical applications. Scr Mater. 2018;146:290–294.
  • Huang YH, Jakus AE, Jordan SW, et al. Three-dimensionally printed hyperelastic bone scaffolds accelerate bone regeneration in critical-size calvarial bone defects. Plast Reconstr Surg. 2019;143(5):1397–1407.
  • Bagheri ZS, Sawi IE, Schemitsch EH, et al. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications. J Mech Behav Biomed Mater. 2013;20:398–406.
  • Luo H, Xiong G, Yang Z, et al. Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility. J Mech Behav Biomed Mater. 2014;29:103–113.
  • Deen I, Selopal GS, Wang ZM, et al. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. J Colloid Interface Sci. 2022;607(Pt 1):869–880.
  • Guo L, Du Z, Wang Y, et al. Degradation behaviors of three-dimensional hydroxyapatite fibrous scaffolds stabilized by different biodegradable polymers. Ceram Int. 2020;46(9):14124–14133.
  • J, M, Miszuk T, Xu Q, Yao, et al. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-Induced bone formation. Appl Mater Today. 2018;10:194–202.
  • Jiao Z, Luo B, Xiang S, et al. 3D printing of HA / PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res. 2019;2(4):196–202.
  • Wang W, Zhang B, Li M, et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B Eng. 2021;224:109192.
  • Krenzlin H, Foelger A, Mailänder V, et al. Novel biodegradable composite of calcium phosphate cement and the collagen I mimetic P-15 for pedicle screw augmentation in osteoporotic bone. Biomedicines 2021;9(10):1392.
  • Manzoor F, Golbang A, Jindal S, et al. 3D printed PEEK/HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential. J Mech Behav Biomed Mater. 2021;121:104601.
  • Wang W, Huang B, Byun JJ, et al. Assessment of PCL/carbon material scaffolds for bone regeneration. J Mech Behav Biomed Mater. 2019;93:52–60.
  • Govindasamy K, Dahlan NA, Janarthanan P, et al. Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Appl Clay Sci. 2020;190:105601.
  • Cakmak AM, Unal S, Sahin A, et al. 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymer 2020;12(9):1962.
  • Douglas TEL, Schietse J, Zima A, et al. Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: physiochemical and microcomputer tomographical characterization. J Biomed Mater Res A. 2018;106(3):822–828.
  • Liu T, Huang K, Li L, et al. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Compos Sci Technol. 2019;175:100–110.
  • Huang W-S, Chu I-M. Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering. PLoS ONE. 2019;14(1):e0210285.
  • Gayer C, Ritter J, Bullemer M, et al. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl. 2019;101:660–673.
  • Mondal S, Nguyen TP, Pham VH, et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020;46(3):3443–3455.
  • Dascălu CA, Maidaniuc A, Pandele AM, et al. Synthesis and characterization of biocompatible polymer-ceramic film structures as favorable interface in guided bone regeneration. Appl Surf Sci. 2019;494:335–352.
  • Gritsch L, Maqbool M, Mouriño V, et al. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B. 2019;7(40):6109–6124.
  • Toloue EB, Karbasi S, Salehi H, et al. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2019;99:1075–1091.
  • Saini RK, Bagri LP, Bajpai AK. Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B Biointerfaces. 2019;177:211–218.
  • Sobczak-Kupiec A, Pluta K, Drabczyk A, et al. Synthesis and characterization of ceramic – polymer composites containing bioactive synthetic hydroxyapatite for biomedical applications. Ceram Int. 2018;44(12):13630–13638.
  • Jaganathan SK, Mani MP, Sivalingam S. Augmented physico-chemical, crystalline, mechanical, and biocompatible properties of electrospun polyurethane titanium dioxide composite patch for cardiac tissue engineering. Polym Compos. 2019;40(9):3758–3767.
  • Domínguez-Robles J, Diaz-Gomez L, Utomo E, et al. Pharm. 2021;14:921..
  • Yang MC, Tsou HM, Hsiao YS, et al. Electrochemical polymerization of PEDOT–graphene oxide–heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers (Basel). 2019;11(9):1520.
  • Kang EY, Choi B, Park W, et al. One step bulk modification of poly(L-lactic acid) composites with functional additives to improve mechanical and biological properties for cardiovascular implant applications. Colloids Surf B Biointerfaces. 2019;179:161–169.
  • Li X, Zhang W, Lin W, et al. Long-Term efficacy of biodegradable metal-polymer composite stents after the first and the second implantations into porcine coronary arteries. ACS Appl Mater Interfaces. 2020;12(13):15703–15715.
  • Jia W, Li M, Weng H, et al. Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2020;110:110717.
  • Abedi A, Hasanzadeh M, Tayebi L. Conductive nanofibrous chitosan/PEDOT: PSS tissue engineering scaffolds. Mater Chem. Phys. 2019;237:121882.
  • Tan Z, Gao X, Liu T, et al. Electrospun vein grafts with high cell infiltration for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;81:407–415.
  • Chandika P, Heo SY, Kim TH, et al. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int J Biol Macromol. 2020;164:2329–2357.
  • Zadeh ZE, Solouk A, Shafieian M, et al. Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2021;118:111403.
  • Mani MP, Jaganathan SK, Faudzi AA, et al. Engineered electrospun polyurethane composite patch combined with Bi-functional components rendering high strength for cardiac tissue engineering. Polymers (Basel). 2019;11(4):705.
  • Lee SJ, Jo HH, Lim KS, et al. Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation. Chem Eng J. 2019;378:122116.
  • Zanjanizadeh Ezazi N, Ajdary R, Correia A, et al. Fabrication and characterization of Drug-Loaded conductive poly(glycerol sebacate)/Nanoparticle-Based composite patch for myocardial infarction applications. ACS Appl Mater Interfaces. 2020;12(6):6899–6909.
  • Li X, Zhang C, Haggerty AE, et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 2020;245:119978.
  • Sharma D, Mathur VP, Satapathy BK. Ann Biomed Eng. 2021;499(49):2030–2056.
  • Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020;162:956–974.
  • Pérez-Mondragón AA, Cuevas-Suárez CE, González-López JA, et al. Preparation and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer. Dent Mater. 2020;36(4):542–550.
  • Cuevas-Suárez CE, González-López JA, da Silva AF, et al. Synthesis of an allyl carbonate monomer as alternative to TEGDMA in the formulation of dental composite resins. J Mech Behav Biomed Mater. 2018;87:148–154.
  • Sharif F, Tabassum S, Mustafa W, et al. Bioresorbable antibacterial PCL‐PLA‐nHA composite membranes for oral and maxillofacial defects. Polym Compos. 2019;40(4):1564–1575.
  • Osmond MJ, Krebs MD. 2021;32:1450–1465.
  • Ansari Z, Kalantar M, Kharaziha M, et al. Polycaprolactone/fluoride substituted-hydroxyapatite (PCL/FHA) nanocomposite coatings prepared by in-situ sol-gel process for dental implant applications. Prog Org Coatings. 2020;147:105873.
  • Cui B, Sun F, Ding Q, et al. Preparation and characterization of sodium aluminum silicate-polymer composites and effects of surface roughness and scratch directions on their flexural strengths. Front Mater. 2021;8:89.
  • Pieniak D, Niewczas A, Walczak A, et al. The effect of thermal stresses on the functional properties of various dental composites. Tribol. Int. 2020;152:106509.
  • Zhou X, Huang X, Li M, et al. J Appl Polym Sci. 2019;136:48180.
  • Xue J, Wang J, Feng D, et al. Molecules 2020;25
  • Madhav H, Singh N, Jaiswar G. Mater Biomed Eng Thermoset Thermoplast Polym. 2019;105–143.
  • Wang F, Guo J, Li K, et al. High strength polymer/silicon nitride composites for dental restorations. Dent Mater. 2019;35(9):1254–1263.
  • Yu W, Zhang H, A L, et al. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids Surf B Biointerfaces. 2020;193:111098.
  • Lazouzi GA, Vuksanović MM, Tomić N, et al. Polym Compos. 2019;40:1691–1701.
  • Elshereksi NW, Ghazali MJ, Muchtar A, et al. Adv Asp Eng Res. 2021;2:75–95.
  • Alamgir M, Mallick A, Nayak GC, et al. Development of PMMA/TiO2 nanocomposites as excellent dental materials. J. Mech. Sci. Technol. 2019;3310(33):4755–4760.
  • Trevathan JK, Baumgart IW, Nicolai EN, et al. Adv Healthc Mater. 2019;8.
  • Zheng X, Woeppel KM, Griffith AY, et al. Soft conducting elastomer for peripheral nerve interface. Adv. Healthc. Mater. 2019;8:1801311.
  • Cheng Y, Xu Y, Qian Y, et al. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy. 2020;69:104411.
  • Soucy JR, Shirzaei Sani E, Portillo Lara R, et al. Photocrosslinkable gelatin/tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Eng Part A. 2018;24(17-18):1393–1405.
  • Zha F, Chen W, Zhang L, et al. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. J Biomater Sci Polym Ed. 2020;31(4):519–548.
  • Zhang M, Li C, Zhou LP, et al. Polymer Scaffolds for Biomedical Appliacations in peripheral Nerve Reconstruction. Molecules. 2021;26(9):2712.
  • Chen S, Zhao Y, Yan X, et al. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res A. 2019;107(6):1273–1283.
  • Snider S, Cavalli A, Colombo F, et al. A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury. J Biomed Mater Res B Appl Biomater. 2017;105(5):1040–1053.
  • Pezzotti G, Marin E, Adachi T, et al. Incorporating Si3 N4 into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants. Macromol. Biosci. 2018;18:1800033.
  • Yoon SK, Yang JH, Lim HT, et al. In vitro and in vivo biosafety analysis of resorbable polyglycolic acid-polylactic acid block copolymer composites for spinal fixation. Polymers (Basel). 2020;13(1):29.
  • Chon JW, Xin Y, Lee SM, et al. In vivo Evaluation of PEEK Copolymer Composites for Prosthetic Spine. Macromol Res. 2021;293(29):244–251.
  • Diez-Ahedo R, Mendibil X, Márquez-Posadas MC, et al. UV-Casting on methacrylated PCL for the production of a peripheral nerve implant containing an array of porous aligned microchannels. Polymers (Basel). 2020;12(4):971.
  • Kargozar S, Mozafari M, Ghenaatgar-Kasbi M, et al. Bioactive Glasses and Glass/Polymer Composites for Neuroregeneration: Should We Be Hopeful? Appl Sci. 2020;10:3421.
  • Berri N, Fares J, Fares Y. Polyethylene oxide and silicon-substituted hydroxyapatite composite: a biomaterial for hard tissue engineering in orthopedic and spine surgery. Adv Biomed Res. 2018;7:117.
  • Luo Y, Xue F, Liu K, et al. Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Mater Des. 2021;201:109484.
  • Silva M, Ferreira FN, Alves NM, et al. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnology. 2020;181(18):1–33.
  • Ramirez-Torres MA, Zemanate L AF, Paola Andrea NA, et al. 2021 IEEE 2nd int Congr. Biomed. Eng. Bioeng. CI-IB BI, 2021.
  • Bhat MM, Madhu Niranjan HT, Aksheth NS, 2018, et al. Evaluation of mechanical properties of polymer composites reinforced with jute mat fiber and egg shell powder for ligaments and tendons replacement. Int J Eng Res Technol (Ijert). 2018;07 (05): 549–552.
  • Leroux A, Maurice E, Viateau V, et al. Feasibility study of the elaboration of a biodegradable and bioactive ligament made of poly(ε-caprolactone)-pNaSS grafted fibers for the reconstruction of anterior cruciate ligament: in vivo experiment. IRBM. 2019;40(1):38–44.
  • Choi S, Choi Y, Kim J. Anisotropic hybrid hydrogels with superior mechanical properties reminiscent of tendons or ligaments. Adv. Funct. Mater. 2019;29(38):1904342.
  • Rangel A, Colaço L, Nguyen NT, et al. Adapting mechanical characterization of a biodegradable polymer to physiological approach of anterior cruciate ligament functions. IRBM. 2022;43(1):39–48.
  • Silva M, Gomes C, Pinho I, et al. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. Nanomater. 2021;11:2796.
  • Sensini A, Cristofolini L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. Material (Basel, Switzerland) 2018;11:1963.
  • Damiano P, Sajad Arabnejad K, Michael T. Bone replacement implants with mechanically biocompatible cellular material US20210052389A1. Montreal, Canada. U.S. Patent and Trademark Office, 2021.
  • Kheradvar AZR. Methods for development of hybrid tissue engineered valve with polyurethane core US10792396B2. California, USA. U.S. Patent and Trademark Office, 2020.
  • Mantovani D. Shape memory alloys: Properties and biomedical applications. JOM. 2000;5210(52):36–44.
  • Wen C, Yu X, Zeng W, et al. Mechanical behaviors and biomedical applications of shape memory materials: A review. AIMS Mater. Sci. 2018;4559(5):559–590.
  • Fulcher JT, Karaca HE, Tandon GP, et al. Thermomechanical and shape memory properties of thermosetting shape memory polymer under compressive loadings. J Appl Polym Sci. 2013;129:1096–1103.
  • Holman H, Kavarana MN, Rajab TK. Smart materials in cardiovascular implants: shape memory alloys and shape memory polymers. Artif Organs. 2021;45(5):454–463.
  • Rubbert R, Berndt E-U, Marquard JS, et al. Customized dental prosthesis for periodontal or osseointegration and related systems US10426578B2. Berlin, Germany. U.S.Patent and Trademark Office, 2019.
  • Greger M, Widomská M, Snášel V. Structure and properties of dental implants. Mater Sci. 2012;23.
  • Triplett RG, Frohberg U, Sykaras N, et al. Implant materials, design, and surface topographies: their influence on osseointegration of dental implants. J Long Term Eff Med Implants. 2003;13(6):485–501.
  • Gaviria L, Salcido JP, Guda T, et al. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg. 2014;40(2):50–60.
  • Wickham JN. Spinal implant system and method. EP3174486A4. Berlin, Germany. European Patent Office, 2018.
  • Warburton A, Girdler SJ, Mikhail CM, et al. Biomaterials in spinal implants: a review. Neurospine 2020;17(1):101–110.
  • Kuo MC, Tsai CM, Huang JC, et al. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys. 2005;90(1):185–195.
  • Mao K, Wang Y, Xiao S, et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J. 2010;19(5):797–802.
  • Zhang Q, Shi B, Ding J, et al. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater. 2019;88:57–77.
  • Laurencin CT, Ko FK, Cooper JA, Jr., et al. Ligament and tendon replacement constructs and methods for production and use thereof US20150190222A1. Philadelphia, USA. U.S. Patent and Trademark Office, 2015.
  • Alshomer F, Chaves C, Kalaskar DM. Advances in Tendon and Ligament Tissue Engineering: Materials Perspective. J. Mater. 2018;2018:1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.