350
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Highly resilient porous polyurethane composite scaffolds filled with whitlockite for bone tissue engineering

, , , , , & show all
Pages 845-859 | Received 24 Aug 2022, Accepted 07 Nov 2022, Published online: 15 Nov 2022

References

  • Ho-Shui-Ling A, Bolander J, Rustom LE, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–162.
  • Kinaci A, Neuhaus V, Ring DC. Trends in bone graft use in the United States. Orthopedics. 2014;37(9):e783–e788.
  • Hollister SJ. Scaffold design and manufacturing: from concept to clinic. Adv Mater. 2009;21(32–33):3330–3342.
  • Habraken W, Habibovic P, Epple M, et al. Calcium phosphates in biomedical applications: materials for the future? Mater Today. 2016;19(2):69–87.
  • Novotna L, Kucera L, Hampl A, et al. Biphasic calcium phosphate scaffolds with controlled pore size distribution prepared by in situ foaming. Mater Sci Eng C Mater Biol Appl. 2019;95:363–370.
  • Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater. 2019;83:435–455.
  • Cheng H, Chabok R, Guan X, et al. Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018;69:342–351.
  • Martin V, Bettencourt A. Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol Appl. 2018;82:363–371.
  • Kim HD, Jang HL, Ahn HY, et al. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials. 2017;112:31–43.
  • Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110698.
  • Rossi F, Santoro M, Perale G. Polymeric scaffolds as stem cell carriers in bone repair. J Tissue Eng Regen Med. 2015;9(10):1093–1119.
  • Szczepańczyk P, Szlachta M, Złocista-Szewczyk N, et al. Recent developments in polyurethane-based materials for bone tissue engineering. Polymers. 2021;13(6):946.
  • Mehrbakhsh E, Rezaei M, Babaie A, et al. Physical and thermo-mechanical properties of shape memory polyurethane containing reversible chemical cross-links. J Mech Behav Biomed Mater. 2021;116:104336.
  • Zia F, Zia KM, Aftab W, et al. Synthesis and characterization of graphene nanoplatelets-hydroxyethyl cellulose copolymer-based polyurethane bionanocomposite system. Int J Biol Macromol. 2020;165(Pt B):1889–1899.
  • Moghaddaszadeh A, Seddiqi H, Najmoddin N, et al. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomed. Mater. 2021;16(6):065029.
  • Nasrollah SAS, Najmoddin N, Mohammadi M, et al. Three dimensional polyurethane/hydroxyapatite bioactive scaffolds: the role of hydroxyapatite on pore generation. J Appl Polym Sci. 2021;138(11):e50017.
  • Jang HL, Jin K, Lee J, et al. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano. 2014;8(1):634–641.
  • Du J, Zuo Y, Lin L, et al. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds. J Mech Behav Biomed Mater. 2018;88:150–159.
  • Du J, Gan S, Bian Q, et al. Preparation and characterization of porous hydroxyapatite/beta-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering. J Biomater Appl. 2018;33(3):402–409.
  • Niu X, Zhao L, Yin M, et al. Mineralized polyamide66/calcium chloride nanofibers for bone tissue engineering. Tissue Eng Part C: Methods. 2020;26(7):354–363.
  • Liu S, Li A, Xuan P. Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression. Compos Part A Appl Sci Manuf. 2019;116:87–97.
  • Hu M, Xiao F, Ke Q-F, et al. Cerium-doped whitlockite nanohybrid scaffolds promote new bone regeneration via SMAD signaling pathway. Chem Eng J. 2019;359:1–12.
  • Xu M, Qin M, Zhang X, et al. Porous PVA/SA/HA hydrogels fabricated by dualcrosslinking method for bone tissue engineering. J Biomater Sci Polym Ed. 2020;31(6):816–831.
  • Yegappan R, Selvaprithiviraj V, Amirthalingam S, et al. Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. Int J Biol Macromol. 2019;122:320–328.
  • Yücel A, Sezer S, Birhanlı E, et al. Synthesis and characterization of whitlockite from sea urchin skeleton and investigation of antibacterial activity. Ceram Int. 2021;47(1):626–633.
  • Batool S, Hussain Z, Liaqat U, et al. Solid-state synthesis and process optimization of bone whitlockite. Ceram Int. 2022;48(10):13850–13854.
  • Jang HL, Zheng GB, Park J, et al. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and beta-tricalcium phosphate. Adv Healthc Mater. 2016;5(1):128–136.
  • Yang Y, Wang H, Yang H, et al. Magnesium-based whitlockite bone mineral promotes neural and osteogenic activities. ACS Biomater Sci Eng. 2020;6(10):5785–5796.
  • Amirthalingam S, Lee SS, Pandian M, et al. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci. 2021;9(7):2439–2453.
  • Babaie E, Bhaduri SB. Fabrication aspects of porous biomaterials in orthopedic applications: a review. ACS Biomater Sci Eng. 2018;4(1):1–39.
  • Zhang X, Liu W, Liu J, et al. Poly-epsilon-caprolactone/whitlockite electrospun bionic membrane with an osteogenic-angiogenic coupling effect for periosteal regeneration. ACS Biomater Sci Eng. 2021;7(7):3321–3331.
  • Dasgupta S, Maji K, Nandi SK. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2019;94:713–728.
  • Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.
  • Zhang K, Fan Y, Dunne N, et al. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater. 2018;5(2):115–124.
  • Cui Z, Zheng Z, Su C, et al. Porous 3-D thermoplastic polyurethane (TPU) scaffold modified with hydroxyapatite (HA) nanoparticles using an ultrasonic method. J Mater Sci. 2019;54(16):11231–11242.
  • Pearce AK, O'Reilly RK. Polymers for biomedical applications: the importance of hydrophobicity in directing biological interactions and application efficacy. Biomacromolecules. 2021;22(11):4459–4469.
  • Husainie SM, Deng X, Ghalia MA, et al. Natural fillers as reinforcement for closed-molded polyurethane foam plaques: mechanical, morphological, and thermal properties. Mater Today Commun. 2021;27:102187.
  • Pouraghaei Sevari S, Kim JK, Chen C, et al. Whitlockite-enabled hydrogel for craniofacial bone regeneration. ACS Appl Mater Interfaces. 2021;13(30):35342–35355.
  • Shakya AK, Kandalam U. Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br J Oral Maxillofac Surg. 2017;55(9):875–891.
  • Zhou D, Qi C, Chen YX, et al. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int J Nanomed. 2017;12:2673–2687.
  • Baek JW, Park H, Kim KS, et al. Marine plankton-derived whitlockite powder-based 3D-printed porous scaffold for bone tissue engineering. Materials. 2022;15(10):3413.
  • Maghfoori F, Najmoddin N, Pezeshki-Modaress M. Enhancing mechanical and antibacterial properties of polycaprolactone nanocomposite nanofibers using decorated clay with ZnO nanorods. J Appl Polym Sci. 2022;139:e52684.
  • Akhigan N, Najmoddin N, Azizi H, et al. Zinc oxide surface-functionalized PCL/graphene oxide scaffold: enhanced mechanical and antibacterial properties. Int J Polym Mater. 2022;1–11.
  • Bakhtiary N, Pezeshki-Modaress M, Najmoddin N. Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chem Eng Sci. 2022;264:118144.
  • Roffi A, Krishnakumar GS, Gostynska N, et al. The role of Three-dimensional scaffolds in treating long bone defects: evidence from preclinical and clinical literature—a systematic review. Biomed Res Int. 2017;2017:8074178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.