238
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Peptide GL13K releasing hydrogel functionalized micro/nanostructured titanium enhances its osteogenic and antibacterial activity

, , & ORCID Icon
Pages 1036-1052 | Received 10 Oct 2022, Accepted 03 Dec 2022, Published online: 18 Dec 2022

References

  • Hu C, Ashok D, Nisbet DR, et al. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials. 2019;219:119366.
  • Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19(18):1621–1639.
  • Pierre CAS, Chan M, Iwakura Y, et al. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles. J Orthop Res. 2010;28(11):1418–1424.
  • Ghimire A, Song J. Anti-periprosthetic infection strategies: from implant surface topographical engineering to smart drug-releasing coatings. ACS Appl Mater Interfaces. 2021;13(18):20921–20937.
  • Spriano S, Yamaguchi S, Baino F, et al. A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018;79:1–22.
  • Ghilini F, Fagali N, Pissinis DE, et al. Multifunctional titanium surfaces for orthopedic implants: antimicrobial activity and enhanced osseointegration. ACS Appl Bio Mater. 2021;4(8):6451–6461.
  • Civantos A, Martínez-Campos E, Ramos V, et al. Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater Sci Eng. 2017;3(7):1245–1261.
  • Shen K, Zhang XJ, Tang Q, et al. Microstructured titanium functionalized by naringin inserted multilayers for promoting osteogenesis and inhibiting osteoclastogenesis. J Biomater Sci Polym Ed. 2021;32(14):1865–1881.
  • Li YD, Wang WQ, Liu HY, et al. Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation. Mater Sci Eng C Mater Biol Appl. 2018;87:90–103.
  • Oh S, Daraio C, Chen LH, et al. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78(1):97–103.
  • Khang D, Choi J, Im YM, et al. Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials. 2012;33(26):5997–6007.
  • Zhao LG, Mei SL, Chu PK, et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31(19):5072–5082.
  • Ding XL, Zhou L, Wang JX, et al. The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo. Int J Nanomed. 2015;10:6955–6973.
  • Huang QL, Ouyang ZX, Tan YN, et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomater. 2019;100:415–426.
  • Wang H, Ma Y, Li J, et al. Modulating autophagy by strontium-doped micro/nano rough titanium surface for promotion of osteogenesis and inhibition of osteoclastogenesis. Colloids Surf B Biointerfaces. 2022;210:112246.
  • Jiang PL, Zhang YM, Hu R, et al. Hydroxyapatite-modified micro/nanostructured titania surfaces with different crystalline phases for osteoblast regulation. Bioact Mater. 2021;6(4):1118–1129.
  • Dong ZQ, Yuan QJ, Huang KQ, et al. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv. 2019;9(31):17737–17744.
  • Loessner D, Meinert C, Kaemmerer E, et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc. 2016;11(4):727–746.
  • Celikkin N, Mastrogiacomo S, Jaroszewicz J, et al. Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration. J Biomed Mater Res A. 2018;106(1):201–209.
  • Yi MH, Lee JE, Kim CB, et al. Locally controlled diffusive release of bone morphogenetic protein-2 using micropatterned gelatin methacrylate hydrogel carriers. Biochip J. 2020;14(4):405–420.
  • Cheng H, Yue K, Kazemzadeh-Narbat M, et al. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Appl Mater Interfaces. 2017;9(13):11428–11439.
  • Shao YJ, You DQ, Lou YT, et al. Controlled release of naringin in GelMA-incorporated rutile nanorod films to regulate osteogenic differentiation of mesenchymal stem cells. ACS Omega. 2019;4(21):19350–19357.
  • Yu LF, Li KP, Zhang J, et al. Antimicrobial peptides and macromolecules for combating microbial infections: from agents to interfaces. ACS Appl Bio Mater. 2022;5(2):366–393.
  • Balhara V, Schmidt R, Gorr SU, et al. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim Biophys Acta. 2013;1828(9):2193–2203.
  • Li YS, Chen RY, Wang FS, et al. Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA). RSC Adv. 2022;12(11):6918–6929.
  • Zhou L, Lai YZ, Huang WX, et al. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. Colloids Surf B Biointerfaces. 2015;128:552–560.
  • Hirt H, Gorr SU. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(10):4903–4910.
  • Zhou L, Lin ZN, Ding JM, et al. Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization. Colloids Surf B Biointerfaces. 2017;160:581–588.
  • Zhou L, Han Y, Ding JM, et al. Regulation of an antimicrobial peptide GL13K-modified titanium surface on osteogenesis, osteoclastogenesis, and angiogenesis base on osteoimmunology. ACS Biomater Sci Eng. 2021;7(9):4569–4580.
  • Van Den Bulcke AI, Bogdanov B, Rooze ND, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1(1):31–38.
  • Zhang XP, Yu SR, He ZM, et al. Wetting of rough surfaces. Surf Rev Lett. 2004;11(1):7–13.
  • Palasantzas G, de Hosson JTM. Wetting on rough surfaces. Acta Mater. 2001;49(17):3533–3538.
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271.
  • Holmberg KV, Abdolhosseini M, Li YP, et al. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013;9(9):8224–8231.
  • Chen X, Hirt H, Li YP, et al. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One. 2014;9(11):e111579.
  • Lai TC, Yu J, Tsai WB. Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. J Mater Chem B. 2016;4(13):2304–2313.
  • Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–681.
  • Wlodarski KH, Reddi AH. Alkaline phosphatase as a marker of osteoinductive cells. Calcif Tissue Int. 1986;39(6):382–385.
  • van Driel M, van Leeuwen J. Vitamin D endocrinology of bone mineralization. Mol Cell Endocrinol. 2017;453:46–51.
  • Holm E, Gleberzon JS, Liao YY, et al. Osteopontin mediates mineralization and not osteogenic cell development in vitro. Biochem J. 2014;464(3):355–364.
  • Yu HY, de Vos P, Ren YJ. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts. Angle Orthod. 2011;81(1):100–106.
  • Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 2020;21(20):7513.
  • Malmsten M. Antimicrobial peptides. Ups J Med Sci. 2014;119(2):199–204.
  • Fu MJ, Liang YJ, Lv X, et al. Recent advances in hydrogel-based anti-infective coatings. J Mater Sci Technol. 2021;85:169–183.
  • Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C Mater Biol Appl. 2016;61:965–978.
  • Liu SF, Wang QC, Liu W, et al. Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. Nanoscale. 2021;13(23):10587–10599.
  • Prabu V, Karthick P, Rajendran A, et al. Bioactive Ti alloy with hydrophilicity, antibacterial activity and cytocompatibility. RSC Adv. 2015;5(63):50767–50777.
  • Yang K, Shi JR, Wang L, et al. Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review. J Mater Sci Technol. 2022;99:82–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.