360
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Preparation, properties, applications and outlook of graphene-based materials in biomedical field: a comprehensive review

, , & ORCID Icon
Pages 1121-1156 | Received 04 Aug 2022, Accepted 03 Dec 2022, Published online: 15 Dec 2022

References

  • Lucio-Arias D, Leydesdorff L. Knowledge emergence in scientific communication: from “fullerenes” to “nanotubes”. Scim. 2007;70(3):603–632.
  • De B, Karak N. Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. J Mater Chem A. 2017;5(5):1826–1859.
  • Kumar CV, Pattammattel A. Discovery of graphene and beyond. In: Kumar CV, Pattammattel A, editors. Introduction to graphene. Elsevier; 2017. p. 1–15.
  • Sattari S, Adeli M, Beyranvand S, et al. Functionalized graphene platforms for anticancer drug delivery. Int J Nanomedicine. 2021;16:5955–5980.
  • Lu N, Wang L, Lv M, et al. Graphene-based nanomaterials in biosystems. Nano Res. 2019;12(2):247–264.
  • Ramezani Farani M, Khadive Parsi P, Riazi G, et al. Extending the application of a magnetic PEG three-part drug release device on a graphene substrate for the removal of Gram-positive and gram-negative bacteria and cancerous and pathologic cells. Drug Des Devel Ther. 2019;13:1581–1591.
  • Service RF. Beyond graphene. Science. 2015;348(6234):490–492.
  • Ball P. A new twist on graphene: an interview with Pablo Jarillo-Herrero and Allan MacDonald. Natl Sci Rev. 2022;9(4):nwac005.
  • Zhang Y, Tan Y-W, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438(7065):201–204.
  • Si A, Kyzas GZ, Pal K, et al. Graphene functionalized hybrid nanomaterials for industrial-scale applications: a systematic review. JMoSt. 2021;1239:130518.
  • Li J, Zeng H, Zeng Z, et al. Promising graphene-based nanomaterials and their biomedical applications and potential risks: a comprehensive review. ACS Biomater Sci Eng. 2021;7(12):5363–5396.
  • Schoche S, Hong N, Khorasaninejad M, et al. Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. ApSS. 2017;421:778–782.
  • Priya Swetha PD, Manisha H, Sudhakaraprasad K. Graphene and graphene-based materials in biomedical science. Part Part Syst Charact. 2018;35(8):1800105.
  • Sadhukhan S, Ghosh TK, Rana D, et al. Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property. MaRBu. 2016;79:41–51.
  • Fatima N, Qazi UY, Mansha A, et al. Recent developments for antimicrobial applications of graphene-based polymeric composites: a review. J Ind Eng Chem. 2021;100:40–58.
  • Vasseghian Y, Dragoi EN, Almomani F, et al. Graphene-based materials for metronidazole degradation: a comprehensive review. Chemosphere. 2022;286(Pt 2):131727.
  • Kumar S, Chatterjee K. Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Appl Mater Interfaces. 2016;8(40):26431–26457.
  • Xu ST, Liu JK, Xue Y, et al. Appropriate conditions for preparing few-layered graphene oxide and reduced graphene oxide. Fuller Nanotub Carbon Nanostruct. 2017;25(1):40–46.
  • Bai YT, Ming Z, Cao YY, et al. Influence of graphene oxide and reduced graphene oxide on the activity and conformation of lysozyme. Colloids Surf B Biointerfaces. 2017;154:96–103.
  • Yadav R, Subhash A, Chemmenchery N, et al. Graphene and graphene oxide for fuel cell technology. Ind Eng Chem Res. 2018;57(29):9333–9350.
  • Zhang C, Wang Y, Zhao H. Is graphene oxide a chemoattractant? Nano Lett. 2020;20(2):1455–1460.
  • Pal K, Asthana N, Aljabali AA, et al. A critical review on multifunctional smart materials 'nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci. 2022;47(5):691–707.
  • Torrisi L, Cutroneo M, Torrisi A, et al. Measurements on five characterizing properties of graphene oxide and reduced graphene oxide foils. Phys Status Solidi A - Appl Mater Sci. 2022;219(6):2100628.
  • Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–1565.
  • Bousa D, Luxa J, Mazanek V, et al. Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Adv. 2016;6(71):66884–66892.
  • Häusler T, Gebhardt P, Iglesias D, et al. Ice nucleation activity of graphene and graphene oxides. J Phys Chem C. 2018;122(15):8182–8190.
  • Zhou Q, Xia G, Du M, et al. Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water. ApSS. 2019;483:52–59.
  • Liu Z, Fu S, Liu X, et al. Small size, big impact: recent progress in bottom-up synthesized nanographenes for optoelectronic and energy applications. Adv Sci. 2022;9(19):e2106055.
  • Pal K, Si A, El-Sayyad GS, et al. Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO(2)hybrid matrix: optoelectronics and biotechnological aspects. Crit Rev Solid State Mater Sci. 2021;46(5):385–449.
  • Milosavljevic V, Mitrevska K, Adam V. Benefits of oxidation and size reduction of graphene/graphene oxide nanoparticles in biosensing application: classification of graphene/graphene oxide nanoparticles. Sens Actuators B - Chem. 2022;353:131122.
  • Li X, Yu J, Wageh S, et al. Graphene in photocatalysis: a review. Small. 2016;12(48):6640–6696.
  • Eredia M, Bertolazzi S, Leydecker T, et al. Morphology and electronic properties of electrochemically exfoliated graphene. J Phys Chem Lett. 2017;8(14):3347–3355.
  • Azizi-Lalabadi M, Jafari SM. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv Colloid Interface Sci. 2021;292:102416.
  • Gutierrez-Cruz A, Ruiz-Hernandez AR, Vega-Clemente JF, et al. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. J Mater Sci. 2022;57(31):14543–14578.
  • Jeong S-J, Jo S, Lee J, et al. Self-Aligned multichannel graphene nanoribbon transistor arrays fabricated at wafer scale. Nano Lett. 2016;16(9):5378–5385.
  • Zhu J, Tang Y, Wang G, et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl Mater Interfaces. 2017;9(16):14470–14477.
  • Yang Y, Jiang X, Li YJ, et al. Construction of halogenated graphenes by halogenation of hydrogenated graphene. Compos Commun. 2021;25:100771.
  • Torrisi L, Silipigni L, Torrisi A. Argon diffusion in graphene oxide and reduced graphene oxide foils. Vacuu. 2022;200:110993.
  • Al-Gaashani R, Najjar A, Zakaria Y, et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int. 2019;45(11):14439–14448.
  • Zaminpayma E, Razavi ME, Nayebi P. Electronic properties of graphene with single vacancy and Stone-Wales defects. ApSS. 2017;414:101–106.
  • Neto AHC, Guinea F, Peres NMR, et al. The electronic properties of graphene. RvMP. 2009;81(1):109–162.
  • Kubesa O, Horackova V, Moravec Z, et al. Graphene and graphene oxide for biosensing. Monatsh Chem. 2017;148(11):1937–1944.
  • Asiya SI, Pal K, Kralj S, et al. Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater Today Chem. 2020;17:100327.
  • Lingaraju K, Raja Naika H, Nagaraju G, et al. Biocompatible synthesis of reduced graphene oxide from euphorbia heterophylla (L.) and their in-vitro cytotoxicity against human cancer cell lines. Biotechnol Rep (Amst). 2019;24:e00376.
  • Dave K, Park KH, Dhayal M. Two-step process for programmable removal of oxygen functionalities of graphene oxide: functional, structural and electrical characteristics. RSC Adv. 2015;5(116):95657–95665.
  • Tarcan R, Todor-Boer O, Petrovai I, et al. Reduced graphene oxide today. J Mater Chem C. 2020;8(4):1198–1224.
  • Kurian M. Recent progress in the chemical reduction of graphene oxide by green reductants – a mini review. Carbon Trends. 2021;5:100120.
  • Liu Y, Dong Y, Zhang Y, et al. Effect of different preparation processes on tribological properties of graphene. Nanomater Nanotechnol. 2020;10:184798042094665.
  • Barhoum A, Pal K, Rahier H, et al. Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today. 2019;17:1–35.
  • Osman A, Elhakeem A, Kaytbay S, et al. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv Compos Hybrid Mater. 2022;5(2):547–605.
  • Danial WH, Norhisham NA, Ahmad Noorden AF, et al. A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Lett. 2021;31(3):371–388.
  • Loudiki A, Matrouf M, Azriouil M, et al. Preparation of graphene samples via electrochemical exfoliation of pencil electrode: physico-electrochemical characterization. Appl Surf Sci Adv. 2022;7:100195.
  • Chen HW, Li C, Qu LT. Solution electrochemical approach to functionalized graphene: history, progress and challenges. Carbon. 2018;140:41–56.
  • Zakharov AA, Vinogradov NA, Aprojanz J, et al. Wafer scale growth and characterization of edge specific graphene nanoribbons for nanoelectronics. ACS Appl Nano Mater. 2019;2(1):156–162.
  • Talyzin AV, Mercier G, Klechikov A, et al. Brodie vs Hummers graphite oxides for preparation of multi-layered materials. Carbon. 2017;115:430–440.
  • Botas C, Álvarez P, Blanco P, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon. 2013;65:156–164.
  • Dideikin AT, Vul AY. Graphene oxide and derivatives: the place in graphene family. FrPhy. 2019;6:149.
  • Tsagkalias IS, Papadopoulou S, Verros GD, et al. Polymerization kinetics of n-Butyl methacrylate in the presence of graphene oxide prepared by two different oxidation methods with or without functionalization. Ind Eng Chem Res. 2018;57(7):2449–2460.
  • Kumar P, Andersson G, Subhedar KM, et al. Utilization of green reductant Thuja Orientalis for reduction of GO to RGO. Ceram Int. 2021;47(10):14862–14878.
  • Shen J, Li T, Long Y, et al. One-step solid state preparation of reduced graphene oxide. Carbon. 2012;50(6):2134–2140.
  • Ren X, Shanb Ghazani M, Zhu H, et al. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: a review. ApEn. 2022;315:118970.
  • Qu Y, He F, Yu C, et al. Advances on graphene-based nanomaterials for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018;90:764–780.
  • Kim YJ, Hong IY, Shim J, et al. Preparation and characterization of black liquor-derived activated carbon by self-chemical activation. Carbon Lett. 2020;30(2):115–121.
  • Zhang Q, Wu Z, Li N, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C Mater Biol Appl. 2017;77:1363–1375.
  • Cao K, Feng S, Han Y, et al. Elastic straining of free-standing monolayer graphene. Nat Commun. 2020;11(1):284.
  • Keramati M, Ghasemi I, Karrabi M, et al. Incorporation of surface modified graphene nanoplatelets for development of shape memory PLA nanocomposite. Fibers Polym. 2016;17(7):1062–1068.
  • Vasic B, Matkovic A, Ralevic U, et al. Nanoscale wear of graphene and wear protection by graphene. Carbon. 2017;120:137–144.
  • Alrashed MM, Soucek MD, Jana SC. Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings. POrCo. 2019;134:197–208.
  • Liu J, Dong J, Zhang T, et al. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release. 2018;286:64–73.
  • Song S, Shen H, Wang Y, et al. Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces. 2020;185:110596.
  • Li D, Wang Y, Cui T, et al. Local carbon concentration determines the graphene edge structure. J Phys Chem Lett. 2020;11(9):3451–3457.
  • Zhang P, Guo Z, Chen C, et al. Uncertainties in the antibacterial mechanisms of graphene family materials. Nano Today. 2022;43:101436.
  • Kashid RV, Yusop MZ, Takahashi C, et al. Field emission characteristics of pristine and N-doped graphene measured by in-situ transmission electron microscopy. JAP. 2013;113(21):214311.
  • Cao GH, Yan JH, Ning XX, et al. Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids Surf B Biointerfaces. 2021;200:111588.
  • Diez-Pascual AM. Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: a Mini-Review. Int J Mol Sci. 2020;21(10):3563.
  • Qiu JJ, Liu L, Zhu HQ, et al. Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact Mater. 2018;3(3):341–346.
  • Shi L, Chen JR, Teng LJ, et al. The antibacterial applications of graphene and its derivatives. Small. 2016;12(31):4165–4184.
  • Guo ZL, Xie CJ, Zhang P, et al. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci Total Environ. 2017;580:1300–1308.
  • Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105(Pt B):176–189.
  • Cao W, He L, Cao W, et al. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 2020;112:14–28.
  • Rozhina E, Batasheva S, Miftakhova R, et al. Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Appl Clay Sci. 2021;205:106041.
  • Abdelhalim AOE, Meshcheriakov AA, Maistrenko DN, et al. Graphene oxide enriched with oxygen-containing groups: on the way to an increase of antioxidant activity and biocompatibility. Colloids Surf B Biointerfaces. 2022;210:112232.
  • Pinto AM, Gonçalves C, Sousa DM, et al. Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon. 2016;99:318–329.
  • Kiew SF, Kiew LV, Lee HB, et al. Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Control Release. 2016;226:217–228.
  • Abdelhalim AOE, Sharoyko VV, Meshcheriakov AA, et al. Reduction and functionalization of graphene oxide with L-cysteine: synthesis, characterization and biocompatibility. Nanomedicine. 2020;29:102284.
  • Abdelhalim AOE, Sharoyko VV, Meshcheriakov AA, et al. Synthesis, characterisation and biocompatibility of graphene–L-methionine nanomaterial. J Mol Liq. 2020;314:113605.
  • Jyoti J, Kiran A, Sandhu M, et al. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect. J Mech Behav Biomed Mater. 2021;117:104376.
  • Li Y, Jia H, Cui X, et al. Bending properties, compression properties, biocompatibility and bioactivity of sulfonated carbon fibers/PEEK composites with graphene oxide coating. ApSS. 2022;575:151774.
  • Fauzi F, Musawwa MM, Hidayat H, et al. Nanocomposites based on biocompatible polymers and graphene oxide for antibacterial coatings. Polym Polym Compos. 2021;29(9):s1609–1620.
  • Peng F, Zhang D, Wang D, et al. Enhanced corrosion resistance and biocompatibility of magnesium alloy by hydroxyapatite/graphene oxide bilayer coating. MatL. 2020;264:127322.
  • Wang S-D, Ma Q, Wang K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS Omega. 2018;3(1):406–413.
  • Sedki M, Mirabedini PS, Nakama K, et al. Synthesis of pristine graphene-like behaving rGO thin film: insights into what really matters. Carbon. 2022;186:437–451.
  • El-Makaty FM, Andre Mkhoyan K, Youssef KM. The effects of structural integrity of graphene on the thermoelectric properties of the n-type bismuth-telluride alloy. JAllC. 2021;876:160198.
  • Karteri İ, Karataş Ş, Yakuphanoglu F. Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators. J Mater Sci: mater Electron. 2016;27(5):5284–5293.
  • Peng X, Wang Z, Wang Z, et al. Electron reduction for the preparation of rGO with high electrochemical activity. Catal Today. 2019;337:63–68.
  • Kim TY, Park CH, Marzari N. The electronic thermal conductivity of graphene. Nano Lett. 2016;16(4):2439–2443.
  • Wei AR, Li YF, Ren WJ, et al. An interlayer/intralayer coupling mechanism for the thermal characteristics of polycrystalline few-layer graphene. ApPhL. 2019;114(2):021902.
  • Duan X, Sun N, Fu L, et al. Dirac-like band structure and strain-tunable electronic structure of Zr2CCl2 monolayer. ApSS. 2022;577:151931.
  • Qu Y, Ding J, Fu H, et al. Investigation on tunable electronic properties of semiconducting graphene induced by boron and sulfur doping. ApSS. 2021;542:148763.
  • Zhong C, Zhang Z, Ma H, et al. Silicon thermo-optic switches with graphene heaters operating at mid-infrared waveband. Nanomaterials. 2022;12(7):1083.
  • Zhang Y, Ren H, Chen H, et al. Cotton fabrics decorated with conductive graphene nanosheet inks for flexible wearable heaters and strain sensors. ACS Appl Nano Mater. 2021;4(9):9709–9720.
  • Huang Y, Tao LQ, Yu J, et al. Health monitoring and automatic notification device based on Laser-Induced graphene. IEEE Trans Electron Devices. 2020;67(10):4488–4492.
  • Ren D, Chen YJ, Yang SL, et al. Fast and efficient electric-triggered self-healing shape memory of CNTs@rGO enhanced PCLPLA copolymer. Macromol Chem Phys. 2019;220(21):1900281.
  • Arvand M, Mirroshandel AA. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem. 2019;280:115–122.
  • Aggarwal M, Basu S, Shetti NP, et al. Photocatalytic conversion of CO2 into valuable products using emerging two-dimensional graphene-based nanomaterials: a step towards sustainability. Chem Eng J. 2021;425:131401.
  • Cai C, Wang T, Zhang Y, et al. Facile fabrication of ultra-large graphene film with high photothermal effect and thermal conductivity. ApSS. 2021;563:150354.
  • Pakharukov YV, Shabiev FK, Safargaliev RF, et al. Quenching of graphene suspension photoluminescence with saturated hydrocarbons. Colloid Interface Sci Commun. 2021;42:100431.
  • Hashemi H, Namazi H. Understanding the pH dependent fluorescence and doxorubicin release from graphene oxide functionalized citric acid dendrimer as a highly efficient drug delivery system. Mater Today Commun. 2021;28:102593.
  • Fan K, Chen X, Liu X, et al. Toward high-efficiency photoluminescence emission by fluorination of graphene oxide: investigations from excitation to emission evolution. Carbon. 2020;165:386–394.
  • Deka M. Tuning the wettability and photoluminescence of graphene quantum dots via covalent modification. NJCh. 2018;42(1):355–362.
  • Saito K, Koishi T, Bao J, et al. Photoluminescence enhancement exceeding 10-Fold from graphene via an additional layer: photoluminescence from monolayer and bilayer graphene epitaxially grown on SiC. J Phys Chem C. 2021;125(20):11014–11022.
  • Zou Y, Feng X, Zhao Y, et al. Selective homocysteine detection of nitrogen-doped graphene quantum dots: synergistic effect of surface catalysis and photoluminescence sensing. Synth Met. 2020;267:116432.
  • Jovanović SP, Marković ZM, Syrgiannis Z, et al. Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. MaRBu. 2017;93:183–193.
  • Sandhu IS, Chitkara M, Rana S, et al. Photocatalytic performances of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures. OQE. 2020;52(7):359.
  • Alshamkhani MT, Teong LK, Putri LK, et al. Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. J Environ Chem Eng. 2021;9(6):106506.
  • Zhu J, Zhang H, Li F, et al. Photothermal effect of graphene/polymer smart nanocomposites under NIR stimuli. Appl Phys A. 2021;127(10):741.
  • Kang K, Lee D, Seo J. Frequency-responsive cooperativity of graphene oxide complexes under a low AC bulk electric field. J Mol Liq. 2021;335:116151.
  • Zhang M, Sun B, Wei Shah K, et al. Molecular dynamics study on electric field-facilitated separation of H2O/O2 through nanoporous graphene oxide membrane. J Mol Liq. 2022;351:118634.
  • Ma XM, Zou JL, Zhang JF, et al. Thermal transport properties of suspended graphene. JAP. 2018;124(4):045107.1–045107.4.
  • Ganguly S, Das P, Maity PP, et al. Green reduced graphene oxide toughened Semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J Phys Chem B. 2018;122(29):7201–7218.
  • Zhang Y, An Q, Tong W, et al. A new way to promote molecular drug release during medical treatment: a polyelectrolyte matrix on a Piezoelectric-Dielectric energy conversion substrate. Small. 2018;14(37):e1802136.
  • Nikazar S, Barani M, Rahdar A, et al. Photo- and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications. ChemistrySelect. 2020;5(40):12590–12609.
  • Chen H, Xing L, Guo H, et al. Dual-targeting SERS-encoded graphene oxide nanocarrier for intracellular co-delivery of doxorubicin and 9-aminoacridine with enhanced combination therapy. Analyst. 2021;146(22):6893–6901.
  • Moise S, Byrne JM, El Haj AJ, et al. The potential of magnetic hyperthermia for triggering the differentiation of cancer cells. Nanoscale. 2018;10(44):20519–20525.
  • Ren M-X, Wang Y-Q, Lei B-Y, et al. Magnetite nanoparticles anchored on graphene oxide loaded with doxorubicin hydrochloride for magnetic hyperthermia therapy. Ceram Int. 2021;47(14):20686–20692.
  • Umar AA, Patah MFA, Abnisa F, et al. Rational design of PEGylated magnetite grafted on graphene oxide with effective heating efficiency for magnetic hyperthermia application. Colloids Surf Physicochem Eng Aspects. 2021;619:126545.
  • Liu J, Yu L-J, Yue G, et al. Thermoresponsive graphene membranes with reversible gating regularity for smart fluid control. Adv Funct Mater. 2019;29(12):1808501.
  • Sharma G, Shrivastav AM, Kumar A, et al. Non-graphene two-dimensional nanosheets for temperature sensing based on microfiber interferometric platform: performance analysis. Sens Actuators, A. 2019;289:180–187.
  • Hashemzadeh H, Raissi H. Understanding loading, diffusion and releasing of doxorubicin and paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems. ApSS. 2020;500:144220.
  • Shim G, Kim M-G, Park JY, et al. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv Drug Deliv Rev. 2016;105(Pt B):205–227.
  • Jayan JS, Pal K, Saritha A, et al. Graphene oxide as multi-functional initiator and effective molecular reinforcement in PVP/epoxy composites. JMoSt. 2021;1230:129873.
  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–9257.
  • Chai D, Hao B, Hu R, et al. Delivery of oridonin and methotrexate via PEGylated graphene oxide. ACS Appl Mater Interfaces. 2019;11(26):22915–22924.
  • Pooresmaeil M, Namazi H, Salehi R. Simple method for fabrication of metal-organic framework within a carboxymethylcellulose/graphene quantum dots matrix as a carrier for anticancer drug. Int J Biol Macromol. 2020;164:2301–2311.
  • Lv Y, Tao L, Annie Bligh SW, et al. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Mater Sci Eng C Mater Biol Appl. 2016;59:652–660.
  • Lu T, Nong Z, Wei L, et al. Preparation and anti-cancer activity of transferrin/folic acid double-targeted graphene oxide drug delivery system. J Biomater Appl. 2020;35(1):15–27.
  • Yun Y, Wu H, Gao J, et al. Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. Mater Sci Eng C Mater Biol Appl. 2020;108:110380.
  • Rodrigues RO, Baldi G, Doumett S, et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater Sci Eng C Mater Biol Appl. 2018;93:206–217.
  • Liu F, Yang D, Liu Y, et al. Improving dispersive property, biocompatibility and targeting gene transfection of graphene oxide by covalent attachment of polyamidoamine dendrimer and glycyrrhetinic acid. Colloids Surf B Biointerfaces. 2018;171:622–628.
  • Lin Y-S, Lin K-S, Chen Y, et al. Synthesis, characterization, and application of gene conjugated polymerized nitrogen-doped graphene quantum dots carriers for in vivo bio-targeting in neuroblastoma treatment. J Taiwan Inst Chem Eng. 2022;131:104167.
  • Yin Y, Li X, Ma H, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21(5):2224–2231.
  • Xu C, Hong H, Lee Y, et al. Efficient lymph node-targeted delivery of personalized cancer vaccines with reactive oxygen Species-Inducing reduced graphene oxide nanosheets. ACS Nano. 2020;14(10):13268–13278.
  • Mahdavian L. DFT studies of the drug carrier of anti-migraine (sumatriptan) on nano-graphene oxide (NGO) and graphene oxide/polyethylene glycol polymer nano-composite. DRM. 2020;104:107745.
  • Pooresmaeil M, Asl EA, Namazi H. Simple fabrication of biocompatible chitosan/graphene oxide microspheres for pH-controlled amoxicillin delivery. Eur Polym J. 2021;59:110706.
  • Chang X, Zhang M, Wang C, et al. Graphene oxide/BaHoF5/PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. Carbon. 2020;158:372–385.
  • Imani R, Mohabatpour F, Mostafavi F. Graphene-based nano-carrier modifications for gene delivery applications. Carbon. 2018;140:569–591.
  • Meng C, Zhi X, Li C, et al. Graphene oxides decorated with carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano. 2016;10(2):2203–2213.
  • Zhou Q, Gu H, Sun S, et al. Large-sized graphene oxide nanosheets increase DC–T-Cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2. Adv Mater. 2021;33(40):2102528.
  • Yunus MA, Ramli MM, Osman NH, et al. Stimulation of innate and adaptive immune cells with graphene oxide and reduced graphene oxide affect cancer progression. Arch Immunol Ther Exp (Warsz). 2021;69(1):20.
  • Reanpang P, Mool-Am-Kha P, Upan J, et al. A novel flow injection amperometric sensor based on carbon black and graphene oxide modified screen-printed carbon electrode for highly sensitive determination of uric acid. Talanta. 2021;232:122493.
  • Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples. Acta Biomater. 2021;131:62–79.
  • Zhang H, Zhang HL, Aldalbahi A, et al. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron. 2017;89(Pt 1):96–106.
  • Yang Q, Deng S, Xu J, et al. Poly(indole-5-carboxylic acid)/reduced graphene oxide/gold nanoparticles/phage-based electrochemical biosensor for highly specific detection of Yersinia pseudotuberculosis. Mikrochim Acta. 2021;188(4):107.
  • Abubakar Sadique M, Yadav S, Ranjan P, et al. Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor. MatL. 2021;305:130824.
  • Özmen EN, Kartal E, Turan MB, et al. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: a review. Mater Sci Eng C Mater Biol Appl. 2021;129:112356.
  • Singh R, Alshaghdali K, Saeed A, et al. Prospects of microbial-engineering for the production of graphene and its derivatives: application to design nanosystms for cancer theranostics. Semin Cancer Biol. 2021;86(3):885–898.
  • Xu S, Wang T, Liu G, et al. Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sensors Actuators B: Chem. 2021;326:128991.
  • Song J, Li Y, Ke D, et al. In situ graphene-modified carbon microelectrode array biosensor for biofilm impedance analysis. Electrochim Acta. 2022;403:139570.
  • Zhang S, Guo J, Liu L, et al. The self-powered artificial synapse mechanotactile sensing system by integrating triboelectric plasma and gas-ionic-gated graphene transistor. Nano Energy. 2022;91:106660.
  • Chang T-H, Tian Y, Li C, et al. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for Collision-Aware surgical robotics. ACS Appl Mater Interfaces. 2019;11(10):10226–10236.
  • Zhang H, He R, Niu Y, et al. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron. 2022;197:113777.
  • Belaid H, Nagarajan S, Teyssier C, et al. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater Sci EngC-Mater Biol Appl. 2020;110:110595.
  • Haghshenas M, Hoveizi E, Mohammadi T, et al. Use of embryonic fibroblasts associated with graphene quantum dots for burn wound healing in Wistar rats. In Vitro Cell Dev Biol Anim. 2019;55(4):312–322.
  • Yang B, Wang PB, Mu N, et al. Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats. Neural Regen Res. 2021;16(9):1829–1835.
  • Reddy S, He LM, Ramakrishana S, et al. Graphene nanomaterials for regulating stem cell fate in neurogenesis and their biocompatibility. Curr Opin Biomed Eng. 2019;10:69–78.
  • Thangavel P, Kannan R, Ramachandran B, et al. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci. 2018;517:251–264.
  • Soliman M, Sadek AA, Abdelhamid HN, et al. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res Vet Sci. 2021;137:262–273.
  • Nguyen HT, Ho TL, Pratomo A, et al. Enzymatically triggered graphene oxide released from multifunctional carriers boosts anti-pathogenic properties for promising wound-healing applications. Mater Sci Eng C - Mater Biol Appl. 2021;128:112265.
  • Shahmoradi S, Golzar H, Hashemi M, et al. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology. 2018;29(47):475101.
  • Owhal A, Pingale AD, Khan S, et al. Facile and scalable co-deposition of anti-bacterial Zn-GNS nanocomposite coatings for hospital facilities: tribo-mechanical and anti-corrosion properties. JOM. 2021;73(12):4270–4278.
  • Stanford MG, Li JT, Chen Y, et al. Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano. 2019;13(10):11912–11920.
  • Zhao ZP, Meng FC, Tang JR, et al. A novel method of fabricating an antibacterial aluminum-matrix composite coating doped graphene/silver-nanoparticles. MatL. 2019;245:211–214.
  • Shan X, Zhang H, Liu C, et al. Reusable self-sterilization masks based on electrothermal graphene filters. ACS Appl Mater Interfaces. 2020;12(50):56579–56586.
  • Zhong H, Zhu ZR, Lin J, et al. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano. 2020;14(5):6213–6221.
  • Lin Z, Wang Z, Zhang X, et al. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Res. 2021;14(4):1110–1115.
  • Cao S, Xu G, Li Q, et al. Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair. Compos B: Eng. 2022;234:109746.
  • Ouadil B, Amadine O, Essamlali Y, et al. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite. Colloids Surf Physicochem Eng Aspects. 2019;579:123713.
  • Teymourinia H, Amiri O, Salavati-Niasari M. Synthesis and characterization of cotton-silver-graphene quantum dots (cotton/Ag/GQDs) nanocomposite as a new antibacterial nanopad. Chemosphere. 2021;267:129293.
  • Gomes RN, Borges I, Pereira AT, et al. Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon. 2018;139:635–647.
  • Phrompet C, Sriwong C, Ruttanapun C. Mechanical, dielectric, thermal and antibacterial properties of reduced graphene oxide (rGO)-nanosized C3AH6 cement nanocomposites for smart cement-based materials. Compos B: Eng. 2019;175:107128.
  • Cho E-C, Chang-Jian C-W, Huang J-H, et al. Laser scribing of Ag-decorated graphene for high-performance and flexible heaters. J Taiwan Inst Chem Eng. 2021;119:224–231.
  • Zhang TY, Zhao HM, Wang DY, et al. A super flexible and custom-shaped graphene heater. Nanoscale. 2017;9(38):14357–14363.
  • Hsieh M-L, Juang R-S, Gandomi YA, et al. Synthesis and characterization of high-performance ZnO/graphene quantum dot composites for photocatalytic degradation of metronidazole. J Taiwan Inst Chem Eng. 2022;131:104180.
  • Suksompong T, Thongmee S, Sudprasert W. Efficacy of a graphene oxide/chitosan sponge for removal of radioactive iodine-131 from aqueous solutions. Life-Basel. 2021;11(7):721.
  • Zhang W, Yin B, Xin Y, et al. Preparation, mechanical properties, and biocompatibility of graphene Oxide-Reinforced chitin monofilament absorbable surgical sutures. Mar Drugs. 2019;17(4):210.
  • Qu JW, Dai ML, Ye WT, et al. Study on the effect of graphene oxide (GO) feeding on silk properties based on segmented precise measurement. J Mech Behav Biomed Mater. 2021;113:104147.
  • Zarei M, Sina S, Hashemi SA. Superior X-ray radiation shielding of biocompatible platform based on reinforced polyaniline by decorated graphene oxide with interconnected tungsten-bismuth-tin complex. RaPC. 2021;188:109588.
  • Wang S-D, Wang K, Ma Q, et al. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater Today Commun. 2020;23:100893.
  • Madurani KA, Suprapto S, Machrita NI, et al. Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J Solid State Sci Technol. 2020;9(9):093013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.