194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of a curcumin encapsulated bioengineered nano-cocktail formulation for stimuli-responsive targeted therapeutic delivery to enhance anti-inflammatory, anti-oxidant, and anti-bacterial properties in sepsis management

, , ORCID Icon &
Pages 1716-1740 | Received 19 Aug 2022, Accepted 05 Jan 2023, Published online: 10 May 2023

References

  • Papafilippou L, Claxton A, Dark P, et al. Nanotools for sepsis diagnosis and treatment. Adv Healthc Mater. 2021;10:1–25.
  • Qian L, Yin X, Ji J, et al. Tumor necrosis factor-α small interfering RNA alveolar epithelial cell-targeting nanoparticles reduce lung injury in C57BL/6J mice with sepsis. J Int Med Res. 2021;49(1):030006052098465.
  • Selvaraj V, Nepal N, Rogers S, et al. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles. Biomaterials. 2015;59:160–171. Available from http://dx.doi.org/10.1016/j.biomaterials.2015.04.025
  • Molinaro R, Pastò A, Corbo C, et al. Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale. 2019;11(28):13576–13586.
  • Zhang CY, Gao J, Wang Z. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater. 2018;30:1–10.
  • Chen G, Deng H, Song X, et al. Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials. 2017;144:30–41. Available from http://dx.doi.org/10.1016/j.biomaterials.2017.08.008
  • Yang Y, Ding Y, Fan B, et al. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. J Control Release. 2020;321:463–474. Available from https://doi.org/10.1016/j.jconrel.2020.02.030
  • Zhang CY, Dong X, Gao J, et al. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci Adv. 2019;5:1–14.
  • Nosrati H, Mojtahedi A, Danafar H, et al. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J Biomed Mater Res A. 2018;106(6):1646–1654.
  • Zamani M, Aghajanzadeh M, Rostamizadeh K, et al. In vivo study of poly(ethylene glycol)-poly (caprolactone)-modified folic acid nanocarriers as a pH responsive system for tumor-targeted co-delivery of tamoxifen and quercetin. J Drug Deliv Sci Technol. 2019;54:101283. Available from https://doi.org/10.1016/j.jddst.2019.101283
  • Kluczka J, Dudek G, Kazek-Kęsik A, et al. Chitosan hydrogel beads supported with ceria for boron removal. Int J Mol Sci. 2019;20:1567.
  • Jin H, Zhao Z, Lan Q, et al. Nasal delivery of hesperidin/chitosan nanoparticles suppresses cytokine storm syndrome in a mouse model of acute lung injury. Front Pharmacol. 2021;11:1–10.
  • Nogueira DR, Tavano L, Mitjans M, et al. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials. 2013;34(11):2758–2772. Available from http://dx.doi.org/10.1016/j.biomaterials.2013.01.005
  • Priya Dharshini K, Fang H, Ramya Devi D, et al. pH-sensitive chitosan nanoparticles loaded with dolutegravir as milk and food admixture for paediatric anti-HIV therapy. Carbohydr Polym. 2021;256:117440.
  • Kiti K, Suwantong O. Bilayer wound dressing based on sodium alginate incorporated with curcumin-β-cyclodextrin inclusion complex/chitosan hydrogel. Int J Biol Macromol. 2020;164:4113–4124. Available from https://doi.org/10.1016/j.ijbiomac.2020.09.013
  • Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, et al. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C. 2018;93:178–190. Available from https://doi.org/10.1016/j.msec.2018.07.069
  • Almalik A, Benabdelkamel H, Masood A, et al. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein corona. Sci Rep. 2017;7(1):1–9. Available from http://dx.doi.org/10.1038/s41598-017-10836-7
  • Deirram N, Zhang C, Kermaniyan SS, et al. pH-Responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun. 2019;40:1–23.
  • Jin YH, Hu HY, Qiao MX, et al. PH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids Surf B Biointerfaces. 2012;94:184–191. Available from http://dx.doi.org/10.1016/j.colsurfb.2012.01.032
  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, et al. PH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640–648. Available from http://dx.doi.org/10.1016/j.ijbiomac.2014.08.040
  • Yu Z, Ma L, Ye S, et al. Construction of an environmentally friendly octenylsuccinic anhydride modified pH-sensitive chitosan nanoparticle drug delivery system to alleviate inflammation and oxidative stress. Carbohydr Polym. 2020;236(115972):115972. Available from https://doi.org/10.1016/j.carbpol.2020.115972
  • Xu T, Jiang C, Zhou Q, et al. Preparation and characterization of octenyl succinic anhydride modified waxy maize starch hydrolyzate/chitosan complexes with enhanced interfacial properties. Carbohydr Polym. 2021;267:118228. Available from https://doi.org/10.1016/j.carbpol.2021.118228
  • Xu T, Jiang C, Zhou Q, et al. Complexation behavior of octenyl succinic anhydride starch with chitosan. Food Hydrocoll. 2021;119:106848. Available from https://doi.org/10.1016/j.foodhyd.2021.106848
  • Yan C, McClements DJ, Zhu Y, et al. Fabrication of OSA starch/chitosan polysaccharide-based high internal phase emulsion via altering interfacial behaviors. J Agric Food Chem. 2019;67(39):10937–10946.
  • Dou C, Li J, He J, et al. Bone-targeted pH-responsive cerium nanoparticles for anabolic therapy in osteoporosis. Bioact Mater. 2021;6(12):4697–4706. Available from https://doi.org/10.1016/j.bioactmat.2021.04.038
  • Selvaraj V, Nepal N, Rogers S, et al. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis. Data Br. 2015;4:105–115.
  • Rice KM, Bandarupalli VVK, Manne NDPK, et al. Spleen data: cerium oxide nanoparticles attenuate polymicrobial sepsis induced spenic damage in male sprague dawley rats. Data Br. 2018;18:740–746. Available from https://doi.org/10.1016/j.dib.2018.03.073
  • Shukla P, Dwivedi P, Gupta PK, et al. Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opin Drug Deliv. 2014;11(11):1697–1712.
  • Wang J, Wang H, Zhu R, et al. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials.2015;53:475–483. Available from http://dx.doi.org/10.1016/j.biomaterials.2015.02.116
  • El-Naggar ME, Al-Joufi F, Anwar M, et al. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces. 2019;177:389–398. Available from https://doi.org/10.1016/j.colsurfb.2019.02.024
  • Chen L, Lu Y, Zhao L, et al. Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of tregs. Int Immunopharmacol. 2018;61:1–7. Available from https://doi.org/10.1016/j.intimp.2018.04.041
  • Koide H, Okishima A, Hoshino Y, et al. Synthetic hydrogel nanoparticles for sepsis therapy. Nat Commun. 2021;12(1):1–14. Available from http://dx.doi.org/10.1038/s41467-021-25847-2
  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–20112.
  • Zholobak NM, Shcherbakov AB, Ivanova OS, et al. Nanoceria-curcumin conjugate: synthesis and selective cytotoxicity against cancer cells under oxidative stress conditions. J Photochem Photobiol B Biol. 2020;209(111921):111921. Available from https://doi.org/10.1016/j.jphotobiol.2020.111921
  • Moussawi RN, Patra D. Nanoparticle Self-Assembled grain like curcumin conjugated ZnO: curcumin conjugation enhances removal of perylene, fluoranthene, and chrysene by ZnO. Sci Rep. 2016;6:24565. Available from http://dx.doi.org/10.1038/srep24565
  • Kalashnikova I, Mazar J, Neal CJ, et al. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis: via modulation of bcl-2/bax in human neuroblastoma. Nanoscale. 2017;9(29):10375–10387.
  • Andrabi SM, Majumder S, Gupta KC, et al. Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids Surf B Biointerfaces. 2020;195(111263):111263. Available from https://doi.org/10.1016/j.colsurfb.2020.111263
  • Hosseinzadeh R, Khorsandi K, Esfahani HS, et al. Preparation of cerium-curcumin and cerium-quercetin complexes and their LEDs irradiation assisted anticancer effects on MDA-MB-231 and A375 cancer cell lines. Photodiagnosis Photodyn Ther. 2021;34(102326):102326. Available from https://doi.org/10.1016/j.pdpdt.2021.102326
  • Kolli MB. The use of cerium oxide and curcumin nanoparticles as therapeutic agents for the treatment of ventricular hypertrophy following pulmonary arterial hypertension. ProQuest Diss Theses. 2012;147:1–129. Available from https://manchester.idm.oclc.org/login?url=https://search.proquest.com/docview/1080955598?accountid=12253%0Ahttp://man-fe.hosted.exlibrisgroup.com/openurl/44MAN/44MAN_services_page?genre=dissertations+%26+theses&atitle=&author=Kolli%2C+Madhukar+Babu&volume
  • Danafar H, Asadi F, Sharafi A, et al. Preparation and evaluation of pH sensitive novel anticancer drug carrier based on magnetic chitosan quartets. Drug Res (Stuttg). 2019;69:496–504.
  • Song X, He G, Ruan H, et al. Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch/Staerke. 2006;58(2):109–117.
  • Tizzotti MJ, Sweedman MC, Tang D, et al. New 1H NMR procedure for the characterization of native and modified food-grade starches. J Agric Food Chem. 2011;59(13):6913–6919.
  • Li H, Ma Y, Yu L, et al. Construction of octenyl succinic anhydride modified porous starch for improving bioaccessibility of β-carotene in emulsions. RSC Adv. 2020;10(14):8480–8489.
  • Altuna L, Herrera ML, Foresti ML. Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll. 2018;80:97–110. Available from https://doi.org/10.1016/j.foodhyd.2018.01.032
  • Sousa F, Cruz A, Pinto IM, et al. Nanoparticles provide long-term stability of bevacizumab preserving its antiangiogenic activity. Acta Biomater. 2018;78:285–295. Available from https://doi.org/10.1016/j.actbio.2018.07.040
  • Yu F, Zheng M, Zhang AY, et al. A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J Control Release. 2019;315:40–54. Available from https://doi.org/10.1016/j.jconrel.2019.10.039
  • Roozbahani F, Sultana N, Fauzi Ismail A, et al. Effects of chitosan alkali pretreatment on the preparation of electrospun PCL/chitosan blend nanofibrous scaffolds for tissue engineering application. J Nanomater. 2013;2013:1–6.
  • Ma LC, An S, Gao L, et al. Anti-inflammatory activity of chitosan nanoparticles carrying NF-κB/p65 antisense oligonucleotide in RAW264.7 macropghage stimulated by lipopolysaccharide. Colloid Surf B Biointerface. 2016;142:297–306.
  • Khan ST, Musarrat J, Al-Khedhairy AA. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerface. 2016;146:70–83. Available from http://dx.doi.org/10.1016/j.colsurfb.2016.05.046
  • Vachharajani V, Wang SW, Mishra N, et al. Curcumin modulates leukocyte and platelet adhesion in murine sepsis. Microcirculation. 2010;17(6):407–416.
  • Xiao X, Yang M, Sun D, et al. Curcumin protects against sepsis-induced acute lung injury in rats. J Surg Res. 2012;176(1):e31–e39. Available from http://dx.doi.org/10.1016/j.jss.2011.11.1032
  • Rostami E. Progresses in targeted drug delivery systems using chitosan nanoparticles in cancer therapy: a mini-review. J Drug Deliv Sci Technol. 2020;58:101813. Available from https://doi.org/10.1016/j.jddst.2020.101813
  • Xu F, Lin SH, Yang YZ, et al. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-β1/SMAD3 pathway. Int Immunopharmacol. 2013;16(1):1–6. Available from http://dx.doi.org/10.1016/j.intimp.2013.03.014
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects. 2019;20:100397. Available from https://doi.org/10.1016/j.nanoso.2019.100397
  • Yaghoubi A, Ghojazadeh M, Abolhasani S, et al. Correlation of serum levels of vitronectin, malondialdehyde and Hs-CRP with disease severity in coronary artery disease. J Cardiovasc Thorac Res. 2015;7(3):113–117. Available from http://dx.doi.org/10.15171/jcvtr.2015.24
  • Jhaveri J, Raichura Z, Khan T, et al. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules. 2021;26(2):272.
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403–1441.
  • Karimi A, Ghodsi R, Kooshki F, et al. Therapeutic effects of curcumin on sepsis and mechanisms of action: a systematic review of preclinical studies. Phytother Res. 2019;33(11):2798–2820.
  • Zhang CY, Lin W, Gao J, et al. PH-Responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl Mater Interfaces. 2019;11(18):16380–16390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.