269
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Formulation and evaluation of a two-stage targeted liposome coated with hyaluronic acid for improving lung cancer chemotherapy and overcoming multidrug resistance

, , , , , , , , , , & ORCID Icon show all
Pages 1928-1951 | Received 06 Dec 2022, Accepted 29 Mar 2023, Published online: 22 Apr 2023

References

  • Gong M, Li Y, Ye X, et al. Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation. Cell Commun Signal. 2020;18(1):98.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Tian Y, Zhang H, Qin Y, et al. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm. 2018;44(12):2071–2082.
  • Shi C, Huang H, Zhou X, et al. Reversing multidrug resistance by inducing mitochondrial dysfunction for enhanced chemo-photodynamic therapy in tumor. ACS Appl Mater Interfaces. 2021;13(38):45259–45268.
  • Yuan X, Ji W, Chen S, et al. A novel paclitaxel-loaded poly (D,L-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomed. 2016;11:2119.
  • Mani S, Swargiary G, Tyagi S, et al. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci. 2021;281:119773.
  • Biswas S, Dodwadkar NS, Deshpande PP, et al. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release. 2012;159(3):393–402.
  • Shi M, Zhang J, Li X, et al. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int J Nanomedicine. 2018;13:4209–4226.
  • Liu S, Khan AR, Yang X, et al. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release. 2021;335:1–20.
  • Qiao H, Zhu Z, Fang D, et al. Redox-triggered mitoxantrone prodrug micelles for overcoming multidrug-resistant breast cancer. J Drug Target. 2018;26(1):75–85.
  • Li H, Yang BB. Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacol Sin. 2013;34(7):870–879.
  • Assanhou AG, Li W, Zhang L, et al. Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials. 2015;73:284–295.
  • Li N, Mai Y, Liu Q, et al. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res. 2021;11(1):131–141.
  • Yi S, Zhang C, Hu J, et al. Preparation, characterization, and in vitro pharmacodynamics and pharmacokinetics evaluation of PEGylated urolithin a liposomes. AAPS PharmSciTech. 2021;22(1):26.
  • Yang Z, Chi D, Wang Q, et al. Improved antitumor activity and tolerability of cabazitaxel derived remote loading liposomes. Int J Pharm. 2020;589:119814.
  • Liu J, Wang Z, Li F, et al. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: characterization and evaluation. Asian J Pharm Sci. 2015;10(3):212–222.
  • Farooq MA, Huang X, Jabeen A, et al. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf B Biointerfaces. 2021;199:111523.
  • Li Y, Tan X, Liu X, et al. Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance. Asian J Pharm Sci. 2020;15(5):646–660.
  • Gao L, Wang X, Ma J, et al. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloids Surf B Biointerfaces. 2016;140:307–316.
  • Zheng YL, Tu ZS, Cui HM, et al. Redox-based strategy for selectively inducing energy crisis inside cancer cells: an example of modifying dietary curcumin to target mitochondria. J Agric Food Chem. 2022;70(9):2898–2910.
  • Li QY, Yang JT, Chen C, et al. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. J Control Release. 2020;325:38–51.
  • Jeena MT, Kim S, Jin S, et al. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers. 2019;12(1):4.
  • Wang XX, Li YB, Yao HJ, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials. 2011;32(24):5673–5687.
  • Han Y, Gao C, Wang H, et al. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioact Mater. 2021;6(2):529–542.
  • Zhong XC, Shi MH, Liu HN, et al. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance. Pharm Dev Technol. 2021;26(1):21–29.
  • Zhou J, Zhao WY, Ma X, et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 2013;34(14):3626–3638.
  • Zhao R, Ning X, Wang M, et al. A multifunctional nano-delivery system enhances the chemo-co-phototherapy of tumor multidrug resistance via mitochondrial-targeting and inhibiting P-glycoprotein-mediated efflux. J Mater Chem B. 2021;9(44):9174–9182.
  • Dong S, Bi Y, Sun X, et al. Dual‐loaded liposomes tagged with hyaluronic acid have synergistic effects in triple‐negative breast cancer. Small. 2022;18(16):2107690.
  • Yang X, Li Y, Li M, et al. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 2013;334(2):338–345.
  • Liu Y, Bravo KMC, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 2021;6(2):78–94.
  • Yoshikawa T, Mori Y, Feng H, et al. Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int J Pharm. 2019;565:481–487.
  • Ran R, Liu Y, Gao H, et al. Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance. Int J Pharm. 2014;477(1-2):590–600.
  • Yang C, Yang Z, Wang S, et al. Berberine and folic acid co-modified pH-sensitive Cascade-targeted PTX-liposomes coated with Tween 80 for treating glioma. Bioorg Med Chem. 2022;69:116893.
  • Chen M, Wang S, Qi Z, et al. Deuterated colchicine liposomes based on oligomeric hyaluronic acid modification enhance anti-tumor effect and reduce systemic toxicity. Int J Pharm. 2023;632:122578.
  • Lei M, Ma G, Sha S, et al. Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv. 2019;26(1):262–272.
  • Luo K, Xu F, Yao T, et al. TPGS and chondroitin sulfate dual-modified lipid-albumin nanosystem for targeted delivery of chemotherapeutic agent against multidrug-resistant cancer. Int J Biol Macromol. 2021;183:1270–1282.
  • Cheng Y, Ji Y. Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity. J Control Release. 2020;318:38–49.
  • Song Y, Liu D, Cheng Y, et al. Dual subcellular compartment delivery of doxorubicin to overcome drug resistant and enhance antitumor activity. Sci Rep. 2015;5(1):16125.
  • Wang H, Gao Z, Liu X, et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun. 2018;9(1):562.
  • Chen R, Wang Z, Wu S, et al. Chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug for significantly synergetic multidrug resistance reversal. J Biomater Appl. 2021;35(8):994–1004.
  • Singh Y, Viswanadham KKDR, Pawar VK, et al. Induction of mitochondrial cell death and reversal of anticancer drug resistance via nanocarriers composed of a triphenylphosphonium derivative of tocopheryl polyethylene glycol succinate. Mol Pharm. 2019;16(9):3744–3759.
  • Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8(4):603–619.
  • Hu N, Gao Z, Cao P, et al. Uniform and disperse selenium nanoparticles stabilized by inulin fructans from Codonopsis pilosula and their anti-hepatoma activities. Int J Biol Macromol. 2022;203:105–115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.