173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Eco-friendly preparation, characterization, evaluation of anti-melanogenesis/antioxidant effect and in vitro/in vivo safety profile of kojic acid loaded niosome as skin lightener preparation

, , , , , , , & show all
Pages 1952-1980 | Received 22 Jan 2023, Accepted 08 Apr 2023, Published online: 25 Apr 2023

References

  • Sonthalia S, Daulatabad D, Sarkar R. Glutathione as a skin whitening agent: facts, myths, evidence and controversies. Indian J Dermatol Venereol Leprol. 2016;82(3):262–272.
  • Hashemi SM, Emami S. Kojic acid-derived tyrosinase inhibitors: synthesis and bioactivity. mazums-pbr. 2015;1(1):1–17.
  • Noh JM, Kwak SY, Kim DH, et al. Kojic acid–tripeptide amide as a new tyrosinase inhibitor. Peptide Sci Original Res Biomol. 2007;88(2):300–307.
  • Silpa-Archa N, Kohli I, Chaowattanapanit S, et al. Postinflammatory hyperpigmentation: a comprehensive overview: epidemiology, pathogenesis, clinical presentation, and noninvasive assessment technique. J Am Acad Dermatol. 2017;77(4):591–605.
  • James WD, Elston D, Berger T. Andrew’s diseases of the skin E-book: clinical dermatology. Amsterdam: Elsevier Health Sciences; 2011.
  • Duarte I, Campos Lage AC. Frequency of dermatoses associated with cosmetics. Contact Dermatitis. 2007;56(4):211–213.
  • Nicolaidou E, Katsambas AD. Pigmentation disorders: hyperpigmentation and hypopigmentation. Clin Dermatol. 2014;32(1):66–72.
  • Avazpour S, Pardakhty A, Nabatian E, et al. Economical approach for determination of kojic acid by nanostructured ionic liquid-based carbon paste sensor. BioNanoSci. 2020;10(2):502–511.
  • Lim JTE. Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid. Dermatol Surg. 1999;25(4):282–284.
  • Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother. 2019;110:582–593.
  • Burnett CL, Bergfeld WF, Belsito DV, et al. Final report of the safety assessment of kojic acid as used in cosmetics. Int J Toxicol. 2010;29(6 Suppl):244S–2473.
  • Serra-Baldrich E, Tribó MJ, Camarasa JG. Allergic contact dermatitis from kojic acid. Contact Dermatitis. 1998;39(2):86–87.
  • García-Gavín J, González-Vilas D, Fernández-Redondo V, et al. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermatitis. 2010;62(1):63–64.
  • Khezri K, Saeedi M, Morteza-Semnani K, et al. An emerging technology in lipid research for targeting hydrophilic drugs to the skin in the treatment of hyperpigmentation disorders: kojic acid-solid lipid nanoparticles. Artif Cells Nanomed Biotechnol. 2020;48(1):841–853.
  • Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Eng C Mater Biol Appl. 2015;56:393–400.
  • Khatoon M, Shah KU, Din FU, et al. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv. 2017;24(sup1):56–69.
  • Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014;205:187–206.
  • Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target. 2009;17(9):671–689.
  • Manconi M, Sinico C, Valenti D, et al. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(1-2):11–19.
  • Desnita R, Luliana S, Anggraini S. In vitro penetration of alpha arbutin niosome span 60 system in gel preparation. Pharmaciana. 2017;7(2):249–256.
  • Radmard A, Saeedi M, Morteza-Semnani K, et al. An eco-friendly and green formulation in lipid nanotechnology for delivery of a hydrophilic agent to the skin in the treatment and management of hyperpigmentation complaints: arbutin niosome (Arbusome). Colloids Surf B Biointerfaces. 2021;201:111616.
  • Junyaprasert VB, Singhsa P, Suksiriworapong J, et al. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm. 2012;423(2):303–311.
  • Hashemi SMH, Enayatifard R, Akbari J, et al. Venlafaxine HCl encapsulated in niosome: green and eco-friendly formulation for the management of pain. AAPS PharmSciTech. 2022;23(5):149.
  • Pereira-Lachataignerais J, Pons R, Panizza P, et al. Study and formation of vesicle systems with low polydispersity index by ultrasound method. Chem Phys Lipids. 2006;140(1-2):88–97.
  • Khan MI, Madni A, Hirvonen J, et al. Ultrasonic processing technique as a green preparation approach for diacerein-loaded niosomes. AAPS PharmSciTech. 2017;18(5):1554–1563.
  • Kumar PP, Gayatri P, Sunil R, et al. Atorvastatin loaded solid lipid nanoparticles: formulation, optimization, and in vitro characterization. IOSR J Pharm. 2012;2(5):23–32.
  • Enayatifard R, Akbari J, Saeedi M, et al. Investigating the effect of coated lipid nano particles of spironolactone with chitosan on their properties. J Mazandaran Univ Med Sci. 2018;28(162):25–36.
  • Boskabadi M, Saeedi M, Akbari J, et al. Topical gel of vitamin a solid lipid nanoparticles: a hopeful promise as a dermal delivery system. Adv Pharm Bull. 2021;11(4):663–674. Epub 2020/10/03.
  • Saeedi M, Morteza-Semnani K, Akbari J, et al. Brain targeting of venlafaxine HCl as a hydrophilic agent prepared through green lipid nanotechnology. J Drug Delivery Sci Technol. 2021;66:102813.
  • Akbari J, Saeedi M, Morteza-Semnani K, et al. An Eco-Friendly and hopeful promise platform for delivering hydrophilic wound healing agents in topical administration for wound disorder: diltiazem-Loaded niosomes. J Pharm Innov. 2023;18:1–17.
  • Tavano L, Muzzalupo R, Picci N, et al. Co-encapsulation of lipophilic antioxidants into niosomal carriers: percutaneous permeation studies for cosmeceutical applications. Colloids Surf B Biointerfaces. 2014;114:144–149.
  • Namdeo A, Jain N. Liquid crystalline pharmacogel based enhanced transdermal delivery of propranolol hydrochloride. J Control Release. 2002;82(2–3):223–236.
  • Morteza-Semnani K, Saeedi M, Akbari J, et al. Green formulation, characterization, antifungal and biological safety evaluation of terbinafine HCl niosomes and niosomal gels manufactured by eco-friendly green method. J Biomater Sci Polym Ed. 2022;33(18):2325–2352.
  • Attwood D, Florence AT. FASTtrack physical pharmacy. London: Pharmaceutical Press; 2012.
  • Rostamkalaei SS, Akbari J, Saeedi M, et al. Topical gel of metformin solid lipid nanoparticles: a hopeful promise as a dermal delivery system. Colloids Surf B Biointerfaces. 2019;175:150–157.
  • Varshosaz J, Pardakhty A, Hajhashemi V-I, et al. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003;10(4):251–262.
  • Tavano L, Mazzotta E, Muzzalupo R. Innovative topical formulations from diclofenac sodium used as surfadrug: the birth of diclosomes. Colloids Surf B Biointerfaces. 2018;164:177–184.
  • Moazeni E, Gilani K, Sotoudegan F, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul. 2010;27(7):618–627.
  • Tajbakhsh M, Saeedi M, Morteza-Semnani K, et al. Innovation of testosome as a green formulation for the transdermal delivery of testosterone enanthate. J Drug Delivery Sci Technol. 2020;57:101685.
  • Akbari J, Saeedi M, Morteza-Semnani K, et al. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Targeting. 2022;30(1):108–117.
  • Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191.
  • Akbari J, Saeedi M, Morteza-Semnani K, et al. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B Biointerfaces. 2016;145:626–633.
  • Taymouri S, Varshosaz J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res. 2016;5(1):48.
  • Basiri L, Rajabzadeh G, Bostan A. Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT. 2017;84:471–478.
  • Akbari J, Saeedi M, Enayatifard R, et al. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: a potential for efficient dermal delivery. J Drug Delivery Sci Technol. 2020;60:102035.
  • Nasseri B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int J Pharm. 2005;300(1-2):95–101.
  • Mokhtar M, Sammour OA, Hammad MA, et al. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1-2):104–111.
  • Lademann J, Weigmann H-J, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12(5):247–256.
  • Kheradmandnia S, Vasheghani FE, Nosrati M, et al. The effect of process variables on the properties of ketoprofen loaded solid lipid nanoparticles of beeswax and carnauba wax. Iran. J. Chem. Chem. Eng. 2010; 29:181–187.
  • Veerareddy PR, Bobbala SKR. Enhanced oral bioavailability of isradipine via proniosomal systems. Drug Dev Ind Pharm. 2013;39(6):909–917.
  • Pancholi K, Stride E, Edirisinghe M. In vitro method to characterize diffusion of dye from polymeric particles: a model for drug release. Langmuir. 2009;25(17):10007–10013.
  • Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci. 2012;74(3):237–247.
  • Bousmina M. Rheology of polymer blends: linear model for viscoelastic emulsions. Rheol Acta. 1999;38(1):73–83.
  • Carvalho FC, Barbi MS, Sarmento VHV, et al. Surfactant systems for nasal zidovudine delivery: structural, rheological and mucoadhesive properties. J Pharm Pharmacol. 2010;62(4):430–439.
  • Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36.
  • Mahale N, Thakkar P, Mali R, et al. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci. 2012;183-184:46–54.
  • Wester RC, Maibach HI. Animal models for percutaneous absorption. In Topical drug bioavailability, bioequivalence, and penetration. New York: Springer; 1993. p. 333–349.
  • Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–1161.
  • Príborský J, Mühlbachová E. Evaluation of in‐vitro percutaneous absorption across human skin and in animal models. J Pharm Pharmacol. 1990;42(7):468–472.
  • Kravchenko I, Boyko Y, Novikova N, et al. Influence of cholesterol and its esters on skin penetration in vivo and in vitro in rats and mice. Ukr Bioorg Acta. 2011;1:17–21.
  • Tavano L, Alfano P, Muzzalupo R, et al. Niosomes vs microemulsions: new carriers for topical delivery of capsaicin. Colloids Surf B Biointerfaces. 2011;87(2):333–339.
  • Khezri K, Saeedi M, Morteza-Semnani K, et al. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: kojic acid nanostructured lipid carrier. Artif Cells Nanomed Biotechnol. 2021;49(1):38–47.
  • Boo YC. p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants. 2019;8(8):275.
  • Mathieu V, Pirker C, Martin de Lassalle E, et al. The sodium pump α1 Sub‐unit: a disease progression–related target for metastatic melanoma treatment. J Cell Mol Med. 2009;13(9b):3960–3972.
  • Zhu Y, Huang R, Zhu R, et al. DeepScreen: an accurate, rapid, and anti‐interference screening approach for nanoformulated medication by deep learning. Adv Sci (Weinh). 2018;5(9):1800909.
  • Ghafelehbashi R, Akbarzadeh I, Yaraki MT, et al. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int J Pharm. 2019;569:118580.
  • Khoee S, Yaghoobian M. Niosomes: a novel approach in modern drug delivery systems. Nanostructures for drug delivery. Amsterdam: Elsevier; 2017. p. 207–237.
  • Girao H, Mota C, Pereira P. Cholesterol may act as an antioxidant in lens membranes. Curr Eye Res. 1999;18(6):448–454.
  • Sadeghi Ghadi Z, Ebrahimnejad P. Curcumin entrapped hyaluronan containing niosomes: Preparation, characterisation and in vitro/in vivo evaluation. J Microencapsul. 2019;36(2):169–179.
  • Rigopoulos D, Gregoriou S, Katsambas A. Hyperpigmentation and melasma. J Cosmet Dermatol. 2007;6(3):195–202.
  • Ansari M, Hasani S. Synthesis and characterization of a novel niosome system containing adiantum Capillus-Veneris for breast cancer therapy. IJPHO. 2020;10(4): 230–240.
  • Gatabi ZR, Saeedi M, Morteza-Semnani K, et al. Green preparation, characterization, evaluation of anti-melanogenesis effect and in vitro/in vivo safety profile of kojic acid hydrogel as skin lightener formulation. J Biomater Sci Polym Ed. 2022;33(17):2270–2291.
  • Oh M-J, Abdul Hamid M, Ngadiran S, et al. Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Arch Dermatol Res. 2011;303(3):161–170.
  • Lajis AFB, Hamid M, Ariff AB. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol. 2012;2012:1–9.
  • Panzella L, Napolitano A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: recent advances. Cosmetics. 2019;6(4):57.
  • Yu F, Tang X, Qu B, et al. Kojic acid inhibited melanin synthesis by tyrosinase pathway in pteria penguin. Aquac Res. 2020;51(4):1584–1591.
  • Chang T-S. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials. 2012;5(9):1661–1685.
  • Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1-2):33–70.
  • Chaikul P, Khat-Udomkiri N, Iangthanarat K, et al. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur J Pharm Sci. 2019;131:39–49.
  • Mahant S, Kumar S, Nanda S, et al. Microsponges for dermatological applications: perspectives and challenges. Asian J Pharm Sci. 2020;15(3):273–291.
  • Fulton JE, Jr., Farzad‐Bakshandeh A, Bradley S. Studies on the mechanism of action of topical benzoyl peroxide and vitamin a acid in acne vulgaris. J Cutan Pathol. 1974;1(5):191–200.
  • Goyal G, Garg T, Malik B, et al. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv. 2015;22(8):1027–1042.
  • Patel KK, Kumar P, Thakkar HP. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS Pharmscitech. 2012;13(4):1502–1510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.