235
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Functionalized acellular periosteum guides stem cell homing to promote bone defect repair

, , , , , , , , , , , & ORCID Icon show all
Pages 2000-2020 | Received 04 Jan 2023, Accepted 17 Apr 2023, Published online: 22 Apr 2023

References

  • Liu H, Shi Y, Zhu Y, et al. Bioinspired piezoelectric periosteum to augment bone regeneration via synergistic immunomodulation and osteogenesis. ACS Appl Mater Interfaces. 2023;15(9):12273–12293.
  • Dai K, Deng S, Yu Y, et al. Construction of developmentally inspired periosteum-like tissue for bone regeneration. Bone Res. 2022;10(1):1.
  • Thitiset T, Damrongsakkul S, Yodmuang S, et al. A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater Res. 2021;25(1):19.
  • Chen K, Lin X, Zhang Q, et al. Decellularized periosteum as a potential biologic scaffold for bone tissue engineering. Acta Biomater. 2015;19:46–55.
  • He X, Liu W, Liu Y, et al. Nano artificial periosteum PLGA/MgO/Quercetin accelerates repair of bone defects through promoting osteogenic − angiogenic coupling effect via Wnt/β-catenin pathway. Mater Today Bio. 2022;16:100348.
  • Colnot C, Zhang X, Tate KM. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res. 2012;30(12):1869–1878.
  • Fisher JN, Tessaro I, Bertocco T, et al. The application of stem cells from different tissues to cartilage repair. Stem Cells Int. 2017;2017:2761678.
  • Zhang W, Wang N, Yang M, et al. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat. 2022;33:41–54.
  • Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1–13.
  • Esmaeili A, Biazar E, Ebrahimi M, et al. Acellular fish skin for wound healing. International Wound Journal. 2023. doi:10.1111/iwj.14158.
  • Nasarudin NA, Razali M, Goh V, et al. Expression of interleukin-1β and histological changes of the three-dimensional oral mucosal model in response to Yttria-stabilized nanozirconia. Materials. 2023;16(5):2027.
  • Mazloomnejad R, Babajani A, Kasravi M, et al. Angiogenesis and re-endothelialization in decellularized scaffolds: Rrecent advances and current challenges in tissue engineering. Front Bioeng Biotechnol. 2023;11.
  • Borges MF, Maurmann N, Pranke P. Easy-to-assembly system for decellularization and recellularization of liver grafts in a bioreactor. Micromachines. 2023;14(2):449–463.
  • Funamoto S, Nam K, Kimura T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31(13):3590–3595.
  • Al-Maawi S, Orlowska A, Sader R, et al. In vivo cellular reactions to different biomateri-als-physiological and pathological aspects and their consequences. Semin Immunol. 2017;29:49–61.
  • Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7.
  • Zhou Q, Yang C, Yang P. The promotional effect of mesenchymal stem cell homing on bone tissue regeneration. Curr Stem Cell Res Ther. 2017;12(5):365–376.
  • Liu X, Wang X, Wang X, et al. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater. 2013;9(6):6798–6805.
  • Sun X, Yin H, Wang Y, et al. In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system. ACS Appl Mater Interfaces. 2018;10(45):38715–38728.
  • Xin T, Gu Y, Cheng R, et al. Inorganic strengthened hydrogel membrane as regenerative periosteum. ACS Appl Mater Interfaces. 2017;9(47):41168–41180.
  • Yu Y, Wang Y, Zhang W, et al. Biomimetic periosteum-bone substitute composed of pre-osteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomater. 2020;113:317–327.
  • He J, Li Z, Yu T, et al. In vitro and in vivo biocompatibility study on acellular sheep periosteum for guided bone regeneration. Biomed Mater. 2020;15(1):015013.
  • Angele P, Abke J, Kujat R, et al. Influence of different collagen species on physicochemical properties of crosslinked collagen matrices. Biomaterials. 2004;25(14):2831–2841.
  • Li J, Ren N, Qiu J, et al. Carbodiimide crosslinked collagen from porcine dermal matrix for high-strength tissue engineering scaffold. Int J Biol Macromol. 2013;61:69–74.
  • Rault I, Frei V, Herbage D, et al. Evaluation of different chemical methods for crosslinking collagen gel, films and sponges. J Mater Sci: mater Med. 1996;7(4):215–221.
  • Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano. 2019;13(6):6581–6595.
  • Qiu P, Li M, Chen K, et al. Periosteal matrix-derived hydrogel promotes bone re-pair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials. 2020;227:119552.
  • Li N, Song J, Zhu G, et al. Periosteum tissue engineering-a review. Biomater Sci. 2016;4(11):1554–1561.
  • Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990;1(1):60–68.
  • Borie E, Fuentes R, Del Sol M, et al. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Ann Anat. 2011;193(5):412–417.
  • Lin CY, Chang YH, Kao CY, et al. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials. 2012;33(14):3682–3692.
  • Naito Y, Terukina T, Galli S, et al. The effect of simvastatin-loaded polymeric microspheres in a critical size bone defect in the rabbit calvaria. Int J Pharm. 2014;461(1-2):157–162.
  • Lee J, Byun H, Madhurakkat Perikamana SK, et al. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthcare Mater. 2019;8:1801106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.