290
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Vitamin E modified polyamidoamine dendrimer for piperine delivery to alleviate Aβ1–42 induced neurotoxicity in Balb/c mice model

, , , ORCID Icon & ORCID Icon
Pages 2232-2254 | Received 16 Apr 2023, Accepted 15 Jun 2023, Published online: 02 Aug 2023

References

  • Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7(5):521–540. doi: 10.1016/j.nano.2011.03.008.
  • Lee SJC, Nam E, Lee HJ, et al. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev. 2017;46(2):310–323. doi: 10.1039/c6cs00731g.
  • Yamin G, Ono K, Inayathullah M, et al. Amyloid beta-protein assembly as a therapeutic target of Alzheimer’s disease. Curr Pharm Des. 2008;14(30):3231–3246. doi: 10.2174/138161208786404137.
  • Michaelis ML. Drugs targeting alzheimer’s disease: some things old and some things new. J Pharmacol Exp Ther. 2003;304(3):897–904. doi: 10.1124/jpet.102.035840.
  • Hritcu L, Noumedem JA, Cioanca O, et al. Methanolic extract of piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease. Cell Mol Neurobiol. 2014;34(3):437–449. doi: 10.1007/s10571-014-0028-y.
  • Wang C, Cai Z, Wang W, et al. PT. J Nutr Biochem [Internet]. 2019; Available from: doi: 10.1016/j.jnutbio.2019.05.009.
  • Chonpathompikunlert P, Yoshitomi T, Han J, et al. Biomaterials the use of nitroxide radical-containing nanoparticles coupled with piperine to protect neuroblastoma SH-SY5Y cells from a b -induced oxidative stress. Biomaterials [Internet]. 2011;32(33):8605–8612. doi: 10.1016/j.biomaterials.2011.07.024.
  • Elnaggar YSR, Etman SM, Abdelmonsif DA, et al. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine. 2015;10:5459–5473. doi: 10.2147/IJN.S87336.
  • Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine (Lond). 2009;4(5):557–574. doi: 10.2217/nnm.09.38.
  • Xu L, Zhang H, Wu Y. Dendrimer advances for the Central nervous system delivery of therapeutics. ACS Chem Neurosci. 2014;5(1):2–13. doi: 10.1021/cn400182z.
  • Shukla R, Singh A, Pardhi V, et al. Dendrimer-based nanoparticulate delivery system for cancer therapy [Internet]. Polym. Nanoparticles as a Promis. Tool Anti-cancer Ther. Elsevier Inc.; 2019. Available from: doi: 10.1016/B978-0-12-816963-6.00011-X.
  • Klajnert B, Cortijo-Arellano M, Cladera J, et al. Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun. 2006;345(1):21–28. doi: 10.1016/j.bbrc.2006.04.041.
  • Heegaard PMH, Boas U, Otzen DE. Dendrimer effects on peptide and protein fibrillation. Macromol Biosci. 2007;7(8):1047–1059. doi: 10.1002/mabi.200700051.
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–2237. doi: 10.1016/j.addr.2005.09.019.
  • Holubová M, Štěpánek P, Hrubý M. Polymer materials as promoters/inhibitors of amyloid fibril formation. Colloid Polym Sci. 2021;299(3):343–362. doi: 10.1007/s00396-020-04710-8.
  • Gurzov EN, Wang B, Pilkington EH, et al. Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small 2016;12(12):1615–1626. doi: 10.1002/smll.201502317.
  • Guo Y, Luo J, Tan S, et al. The applications of vitamin e TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–186. doi: 10.1016/j.ejps.2013.02.006.
  • Yatin SM, Varadarajan S, Butterfield DA. Vitamin E prevents alzheimer’s amyloid β-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimers Dis. 2000;2(2):123–131. doi: 10.3233/jad-2000-2212.
  • Guo Y, Chu M, Tan S, et al. Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol Pharm. 2014;11(1):59–70. doi: 10.1021/mp400514t.
  • Singh A, Ujjwal RR, Naqvi S, et al. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of alzheimer disease. J Drug Target. 2022;30(7):777–791. doi: 10.1080/1061186X.2022.2063297.
  • Singh A, Mhaske A, Shukla R. Fabrication of TPGS-Grafted polyamidoamine dendrimer for enhanced piperine brain delivery and pharmacokinetics. AAPS PharmSciTech [Internet]. 2022;23;(7):23. doi: 10.1208/s12249-022-02393-8.
  • Zhang M, Jing S, Zhang J, et al. Intracellular release of PluronicL64 unimers into MCF-7/ADR cells to overcome multidrug resistance by surface-modified PAMAM. J Mater Chem B. 2017;5(21):3970–3981. doi: 10.1039/c7tb00659d.
  • Askarian S, Abnous K, Ayatollahi S, et al. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydr Polym. 2017;157:929–937. doi: 10.1016/j.carbpol.2016.10.030.
  • Jasmine MJ, Kavitha M, Prasad E. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers. J Lumin. 2009;129(5):506–513. doi: 10.1016/j.jlumin.2008.12.005.
  • Kulhari H, Pooja D, Prajapati SK, et al. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm. 2011;405(1-2):203–209. doi: 10.1016/j.ijpharm.2010.12.002.
  • Jackson CL, Chanzy HD, Booy FP, et al. Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules. 1998;31(18):6259–6265. doi: 10.1021/ma9806155.
  • Chauhan AS, Sridevi S, Chalasani KB, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003;90(3):335–343. doi: 10.1016/s0168-3659(03)00200-1.
  • Krishna KV, Wadhwa G, Alexander A, et al. Design and biological evaluation of Lipoprotein-Based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci. 2019;10(9):4124–4135. doi: 10.1021/acschemneuro.9b00343.
  • Yin F, Liu J, Ji X, et al. Silibinin: a novel inhibitor of Aβ aggregation. Neurochem Int. 2011;58(3):399–403. doi: 10.1016/j.neuint.2010.12.017.
  • Barrow CJ, Yasuda A, Kenny PTM, et al. Solution conformations and aggregational properties of synthetic amyloid b-peptides of Alzheimer’s disease. J Mol Biol. 1992;225(4):1075–1093. doi: 10.1016/0022-2836(92)90106-t.
  • Cao N, Feng SS. Doxorubicin conjugated to d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 2008;29(28):3856–3865. doi: 10.1016/j.biomaterials.2008.05.016.
  • Khare V, Sakarchi WA, Gupta PN, et al. Synthesis and characterization of TPGS-gemcitabine prodrug micelles for pancreatic cancer therapy. RSC Adv. 2016;6(65):60126–60137. doi: 10.1039/C6RA09347G.
  • Santos JL, Pandita D, Rodrigues J, et al. Receptor-mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. Mol Pharm. 2010;7(3):763–774. doi: 10.1021/mp9002877.
  • Sarkar K, Yang H. Encapsulation and extended release of anti-cancer anastrozole by stealth nanoparticles. Drug Deliv. 2008;15(5):343–346. doi: 10.1080/10717540802035343.
  • Won YW, Yoon SM, Sonn CH, et al. Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano. 2011;5(5):3839–3848. doi: 10.1021/nn200173u.
  • Subramanian R, Sathish S, Murugan P, et al. Effect of piperine on size, shape and morphology of hydroxyapatite nanoparticles synthesized by the chemical precipitation method. J King Saud Univ Sci [Internet]. 2019;31(4):667–673. doi: 10.1016/j.jksus.2018.01.002.
  • Perez M. Gibbs-Thomson effects in phase transformations. Scr Mater. 2005;52(8):709–712. doi: 10.1016/j.scriptamat.2004.12.026.
  • Liu B, Li M, Zhao Y, et al. A sensitive electrochemical immunosensor based on PAMAM dendrimer-encapsulated Au for detection of norfloxacin in animal-derived foods. Sensors (Switzerland). 2018;18(6):1946. doi: 10.3390/s18061946.
  • Chen W, Miao YQ, Fan DJ, et al. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech. 2011;12(2):705–711. doi: 10.1208/s12249-011-9632-z.
  • Meng X, Liu J, Yu X, et al. Pluronic F127 and D-α-tocopheryl polyethylene glycol succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep. 2017;7(1):1–12. doi: 10.1038/s41598-017-03123-y.
  • Hudson SA, Ecroyd H, Kee TW, et al. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. Febs J. 2009;276(20):5960–5972. doi: 10.1111/j.1742-4658.2009.07307.x.
  • Schmidt M, Sachse C, Richter W, et al. Comparison of Alzheimer Aβ(1-40) and Aβ(1-42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci U S A. 2009;106(47):19813–19818. doi: 10.1073/pnas.0905007106.
  • Lu P, Mamiya T, Lu LL, et al. Silibinin attenuates amyloid β25-35 peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-α in mice. J Pharmacol Exp Ther. 2009;331(1):319–326. doi: 10.1124/jpet.109.155069.
  • Sharma S, Verma S, Kapoor M, et al. Alzheimer’s disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior. Neurol Res. 2016;38(9):838–850. doi: 10.1080/01616412.2016.1209337.
  • Saha P, Durugkar S, Jain S, et al. Piperine attenuates cigarette smoke-induced oxidative stress, lung inflammation, and epithelial–mesenchymal transition by modulating the SIRT1/Nrf2 axis. Int J Mol Sci. 2022:23(23):14722.
  • Fu AL, Dong ZH, Sun MJ. Protective effect of N-acetyl-l-cysteine on amyloid β-peptide-induced learning and memory deficits in mice. Brain Res. 2006;1109(1):201–206. doi: 10.1016/j.brainres.2006.06.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.