176
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review

, , , , &
Pages 675-716 | Received 15 Aug 2023, Accepted 29 Oct 2023, Published online: 09 Nov 2023

References

  • Gheorghita R, Anchidin-Norocel L, Filip R, et al. Applications of biopolymers for drugs and probiotics delivery. Polymers (Basel). 2021;13(16):2729. doi: 10.3390/polym13162729.
  • Rebitski EP, Darder M, Carraro R, et al. Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. New J Chem. 2020;44(24):10102–10110. doi: 10.1039/C9NJ06433H.
  • Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: a review. Carbohydr Res. 2021;506:108368. doi: 10.1016/j.carres.2021.108368.
  • Rowland MJ, Atgie M, Hoogland D, et al. Preparation and supramolecular recognition of multivalent peptide-polysaccharide conjugates by cucurbit[8]uril in hydrogel formation. Biomacromolecules. 2015;16(8):2436–2443. doi: 10.1021/acs.biomac.5b00680.
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–1879. doi: 10.1021/cr000108x.
  • Wang Q, Hou R, Cheng Y, et al. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter. 2012;8(22):6048–6056. doi: 10.1039/c2sm07233e.
  • Sood A, Kumar A, Dev A, et al. Advances in hydrogel-based microfluidic blood-brain-barrier models in oncology research. Pharmaceutics. 2022;14(5):993. doi: 10.3390/pharmaceutics14050993.
  • Liu J, Jiang W, Xu Q, et al. Progress in antibacterial hydrogel dressing. Gels. 2022;8(8):503. doi: 10.3390/gels8080503.
  • Kumar A, Rao KM, and Han SS. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr Polym. 2018;193:228–238. doi: 10.1016/j.carbpol.2018.04.004.
  • Tan SY, Tatsumura Y. Alexander Fleming (1881-1955): discoverer of penicillin. Singapore Med J. 2015;56(7):366–367. doi: 10.11622/smedj.2015105.
  • Shoukat H, Buksh K, Noreen S, et al. Hydrogels as potential drug-delivery systems: network design and applications. Ther Deliv. 2021;12(5):375–396. doi: 10.4155/tde-2020-0114.
  • Vernerey FJ, Bryant S. The role of percolation in hydrogel-based tissue engineering and bioprinting. Curr Opin Biomed Eng. 2020;15:68–74. doi: 10.1016/j.cobme.2020.01.005.
  • Radulescu DM, Neacsu IA, Grumezescu AM, et al. New insights of scaffolds based on hydrogels in tissue engineering. Polymers (Basel). 2022;14(4):799. doi: 10.3390/polym14040799.
  • El-Sherbiny IM, Khalil IA, Ali IH. Updates on stimuli-responsive polymers: synthesis approaches and features. In: Thakur VK, Thakur MK, editors. Polymer gels: science and fundamentals. Singapore: Springer Singapore; 2018. p. 129–146.
  • Thirupathi K, Raorane CJ, Ramkumar V, et al. Update on chitosan-based hydrogels: preparation, characterization, and its antimicrobial and antibiofilm applications. Gels. 2022;9(1):35. doi: 10.3390/gels9010035.
  • Ahmad Z, Salman S, Khan SA, et al. Versatility of hydrogels: from synthetic strategies, classification, and properties to biomedical applications. Gels. 2022;8(3):167. doi: 10.3390/gels8030167.
  • Yang K, Han Q, Chen B, et al. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine. 2018;13:2217–2263. doi: 10.2147/IJN.S154748.
  • Carpa R, Remizovschi A, Culda CA, et al. Inherent and composite hydrogels as promising materials to limit antimicrobial resistance. Gels. 2022;8(2):70. doi: 10.3390/gels8020070.
  • Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. J Mater Sci: Mater Med. 2020;31(6):50.
  • Hu B, Owh C, Chee PL, et al. Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev. 2018;47(18):6917–6929. doi: 10.1039/c8cs00128f.
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–121. doi: 10.1016/j.jare.2013.07.006.
  • Varaprasad K, Raghavendra GM, Jayaramudu T, et al. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl. 2017;79:958–971. doi: 10.1016/j.msec.2017.05.096.
  • Kabir SMF, Sikdar PP, Haque B, et al. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater. 2018;7(3):153–174. doi: 10.1007/s40204-018-0095-0.
  • Alven S, Aderibigbe BA. Chitosan and cellulose-based hydrogels for wound management. Int J Mol Sci. 2020;21(24): 9656. doi: 10.3390/ijms21249656
  • Gupta A, Briffa SM, Swingler S, et al. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules. 2020;21(5):1802–1811. doi: 10.1021/acs.biomac.9b01724.
  • Rivero-Buceta V, Aguilar MR, Hernández-Arriaga AM, et al. Anti-staphylococcal hydrogels based on bacterial cellulose and the antimicrobial biopolyesterpoly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate). Int J Biol Macromol. 2020;162:1869–1879. doi: 10.1016/j.ijbiomac.2020.07.289.
  • Chuah C, Wang J, Tavakoli J, et al. Novel bacterial cellulose-poly (acrylic acid) hybrid hydrogels with controllable antimicrobial ability as dressings for chronic wounds. Polymers (Basel). 2018;10(12):1323. doi: 10.3390/polym10121323.
  • Bashari A, Rouhani Shirvan A, Shakeri M. Cellulose-based hydrogels for personal care products. Polymers for Adv Techs. 2018;29(12):2853–2867. doi: 10.1002/pat.4290.
  • Capanema NSV, Mansur AAP, Carvalho S, et al. Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair. J Appl Polym Sci. 2018;135:45812.
  • Turky GM, Moussa MA, Hasanin MS, et al. Carboxymethyl cellulose-based hydrogel: dielectric study, antimicrobial activity and biocompatibility. Arab J Sci Eng. 2021;46(1):17–30. doi: 10.1007/s13369-020-04655-8.
  • Capanema NSV, Carvalho IC, Mansur AAP, et al. Hybrid hydrogel composed of carboxymethylcellulose–silver nanoparticles–doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl Nano Mater. 2019;2(11):7393–7408. doi: 10.1021/acsanm.9b01924.
  • Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, et al. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym. 2018;196:233–245. doi: 10.1016/j.carbpol.2018.05.033.
  • Shariatinia Z, Jalali AM. Chitosan-based hydrogels: preparation, properties and applications. Int J Biol Macromol. 2018;115:194–220. doi: 10.1016/j.ijbiomac.2018.04.034.
  • Zou W, Chen Y, Zhang X, et al. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr Polym. 2018;202:246–257. doi: 10.1016/j.carbpol.2018.08.124.
  • George D, Maheswari PU, Begum K. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol. 2019;132:784–794. doi: 10.1016/j.ijbiomac.2019.04.008.
  • Wang T, Wusigale, Kuttappan DA, Amalaradjou MA, Luo Y, Luo Y. Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv Compos Hybrid Mater 2021;4(3):696–706. doi: 10.1007/s42114-021-00305-1.
  • Liu Y, Xiao Y, Cao Y, et al. Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria. Adv Funct Mater. 2020;30(35):2003196.
  • Tanveer M, Farooq A, Ata S, et al. Aluminum nanoparticles, chitosan, acrylic acid and vinyltrimethoxysilane based hybrid hydrogel as a remarkable water super-absorbent and antimicrobial activity. Surf Interfaces. 2021;25:101285. doi: 10.1016/j.surfin.2021.101285.
  • Volpi N, Schiller J, Stern R, et al. Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem. 2009;16(14):1718–1745. doi: 10.2174/092986709788186138.
  • Romanò CL, De Vecchi E, Bortolin M, et al. Hyaluronic acid and its composites as a local antimicrobial/antiadhesive barrier. J Bone Jt Infect. 2017;2(1):63–72. doi: 10.7150/jbji.17705.
  • Larrañeta E, Henry M, Irwin NJ, et al. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym. 2018;181:1194–1205. doi: 10.1016/j.carbpol.2017.12.015.
  • Catanzano O, D’Esposito V, Pulcrano G, et al. Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds. Int J Polym Mater Polym Biomater. 2017;66(12):626–634. doi: 10.1080/00914037.2016.1252358.
  • Dong Q, Zhong X, Zhang Y, et al. Hyaluronic acid-based antibacterial hydrogels constructed by a hybrid crosslinking strategy for pacemaker pocket infection prevention. Carbohydr Polym. 2020;245:116525. doi: 10.1016/j.carbpol.2020.116525.
  • Zhu J, Li F, Wang X, et al. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces. 2018;10(16):13304–13316. doi: 10.1021/acsami.7b18927.
  • Shirzaei Sani E, Portillo-Lara R, Spencer A, et al. Engineering adhesive and antimicrobial hyaluronic acid/elastin-like polypeptide hybrid hydrogels for tissue engineering applications. ACS Biomater Sci Eng. 2018;4(7):2528–2540. doi: 10.1021/acsbiomaterials.8b00408.
  • Yu QH, Zhang CM, Jiang ZW, et al. Mussel-inspired adhesive polydopamine-functionalized hyaluronic acid hydrogel with potential bacterial inhibition. Glob Chall. 2020;4(2):1900068.
  • Liao CH, Chen CS, Chen YC, et al. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: bio-compatibility, drug release, antimicrobial activity, and biofilm model. J Microbiol Immunol Infect. 2020;53(4):525–531. doi: 10.1016/j.jmii.2019.08.008.
  • Lequeux I, Ducasse E, Jouenne T, et al. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur Polym J. 2014;51:182–190. doi: 10.1016/j.eurpolymj.2013.11.012.
  • Xiao Y, Lu C, Liu Y, et al. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl Mater Interfaces. 2020;12(33):36967–36977. doi: 10.1021/acsami.0c11959.
  • Qamruzzaman M, Ahmed F, Mondal MIH. An overview on starch-based sustainable hydrogels: potential applications and aspects. J Polym Environ. 2022;30(1):19–50. doi: 10.1007/s10924-021-02180-9.
  • Edgar KJ, Marks JA. Green hydrogels based on starch: preparation methods for biomedical applications. Sustainability & green polymer chemistry Volume 1: Green Products and Processes. ACS Symposium Series. Vol. 1372: Washington, DC: American Chemical Society; 2020. p. 173–196.
  • Hassan A, Niazi MBK, Hussain A, et al. Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J Polym Environ. 2018;26(1):235–243. doi: 10.1007/s10924-017-0944-2.
  • Namazi H, Hasani M, Yadollahi M. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int J Biol Macromol. 2019;126:578–584. doi: 10.1016/j.ijbiomac.2018.12.242.
  • Hanafy NAN. Starch based hydrogel NPs loaded by anthocyanins might treat glycogen storage at cardiomyopathy in animal fibrotic model. Int J Biol Macromol. 2021;183:171–181. doi: 10.1016/j.ijbiomac.2021.04.131.
  • González K, Guaresti O, Palomares T, et al. The role of cellulose nanocrystals in biocompatible starch-based clicked nanocomposite hydrogels. Int J Biol Macromol. 2020;143:265–272. doi: 10.1016/j.ijbiomac.2019.12.050.
  • Yang X, Liu W, Xi G, et al. Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment. Carbohydr Polym. 2019;222:115012. doi: 10.1016/j.carbpol.2019.115012.
  • Liu S, Wang X, Peng Y, et al. Highly stretchable, strain-sensitive, and antifreezing macromolecular microsphere composite starch-based hydrogel. Macromolecular Mater Eng. 2021;306(9):2100198.
  • Abdollahi Z, Zare EN, Salimi F, et al. Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: antioxidant and antimicrobial properties and accelerated wound healing in vivo. Int J Mol Sci. 2021;22(5): 2531. doi: 10.3390/ijms22052531
  • Quintanilla de Stéfano JC, Abundis-Correa V, Herrera-Flores SD, et al. pH-sensitive starch-based hydrogels: synthesis and effect of molecular components on drug release behavior. Polymers (Basel). 2020;12(9):1974. doi: 10.3390/polym12091974.
  • Urzedo AL, Gonçalves MC, Nascimento MHM, et al. Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater Sci Eng. 2020;6(4):2117–2134. doi: 10.1021/acsbiomaterials.9b01685.
  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–126. doi: 10.1016/j.progpolymsci.2011.06.003.
  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–926. doi: 10.1126/science.8493529.
  • Zakia M, Koo JM, Kim D, et al. Development of silver nanoparticle-based hydrogel composites for antimicrobial activity. Green Chem Lett Rev. 2020;13(1):34–40. doi: 10.1080/17518253.2020.1725149.
  • Bergonzi C, Remaggi G, Graiff C, et al. Three-Dimensional (3D) printed silver nanoparticles/alginate/nanocrystalline cellulose hydrogels: study of the antimicrobial and cytotoxicity efficacy. Nanomaterials (Basel). 2020;10(5):844. doi: 10.3390/nano10050844.
  • Shuai F, Zhang Y, Yin Y, et al. Fabrication of an injectable iron (III) crosslinked alginate-hyaluronic acid hydrogel with shear-thinning and antimicrobial activities. Carbohydr Polym. 2021;260:117777. doi: 10.1016/j.carbpol.2021.117777.
  • Shah SA, Sohail M, Khan SA, et al. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater Sci Eng C Mater Biol Appl. 2021;126:112169. doi: 10.1016/j.msec.2021.112169.
  • Abbasi AR, Sohail M, Minhas MU, et al. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol. 2020;155:751–765. doi: 10.1016/j.ijbiomac.2020.03.248.
  • Xing Q, Yates K, Vogt C, et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep. 2014;4(1):4706. doi: 10.1038/srep04706.
  • Silva SS, Mano JF, Reis RL. Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol. 2010;30(3):200–221. doi: 10.3109/07388551.2010.505561.
  • Salahuddin B, Wang S, Sangian D, et al. Hybrid gelatin hydrogels in nanomedicine applications. ACS Appl Bio Mater. 2021;4(4):2886–2906. doi: 10.1021/acsabm.0c01630.
  • Mu S, Liu W, Zhao L, et al. Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. Polymer. 2019;169:80–94. doi: 10.1016/j.polymer.2019.02.047.
  • Le Thi P, Lee Y, Hoang Thi TT, et al. Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2018;92:52–60. doi: 10.1016/j.msec.2018.06.037.
  • Pham TN, Jiang YS, Su CF, et al. In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities. Int J Biol Macromol. 2020;146:1050–1059. doi: 10.1016/j.ijbiomac.2019.09.230.
  • Resmi R, Unnikrishnan S, Krishnan LK, et al. Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J Appl Polym Sci. 2017;134:44529. doi: 10.1002/app.44529.
  • Imtiaz N, Niazi MBK, Fasim F, et al. Fabrication of an original transparent PVA/gelatin hydrogel: in vitro antimicrobial activity against skin pathogens. Int J Polym Sci. 2019;2019:1–11. doi: 10.1155/2019/7651810.
  • Sani ES, Lara RP, Aldawood Z, et al. An antimicrobial dental light curable bioadhesive hydrogel for treatment of peri-implant diseases. Matter. 2019;1(4):926–944. doi: 10.1016/j.matt.2019.07.019.
  • Moreira TFM, de Oliveira A, da Silva TBV, et al. Hydrogels based on gelatin: effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity. LWT. 2019;103:69–77. doi: 10.1016/j.lwt.2018.12.040.
  • Pham TN, Su CF, Huang CC, et al. Biomimetic hydrogels based on L-Dopa conjugated gelatin as pH-responsive drug carriers and antimicrobial agents. Colloids Surf B Biointerfaces. 2020;196:111316. doi: 10.1016/j.colsurfb.2020.111316.
  • Tang A, Li Y, Yao Y, et al. Injectable keratin hydrogels as hemostatic and wound dressing materials. Biomater Sci. 2021;9(11):4169–4177. doi: 10.1039/d1bm00135c.
  • McKittrick J, Chen PY, Bodde SG, et al. The structure, functions, and mechanical properties of keratin. JOM. 2012;64(4):449–468. doi: 10.1007/s11837-012-0302-8.
  • Ajay Sharma L, Ali MA, Love RM, et al. Novel keratin preparation supports growth and differentiation of odontoblast-like cells. Int Endod J. 2016;49(5):471–482. doi: 10.1111/iej.12476.
  • Bajestani MI, Kader S, Monavarian M, et al. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels. Int J Biol Macromol. 2020;142:790–802. doi: 10.1016/j.ijbiomac.2019.10.020.
  • Kim SY, Park BJ, Lee Y, et al. Human hair keratin-based hydrogels as dynamic matrices for facilitating wound healing. J Ind Eng Chem. 2019;73:142–151. doi: 10.1016/j.jiec.2019.01.017.
  • Villanueva ME, Cuestas ML, Pérez CJ, et al. Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. J Colloid Interface Sci. 2019;536:372–380. doi: 10.1016/j.jcis.2018.10.067.
  • Lu TY, Huang WC, Chen Y, et al. Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B Biointerfaces. 2020;195:111258. doi: 10.1016/j.colsurfb.2020.111258.
  • Cao Y, Yao Y, Li Y, et al. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci. 2019;544:121–129. doi: 10.1016/j.jcis.2019.02.049.
  • Liu C, Zhang Q, Zhu S, et al. Preparation and applications of peptide-based injectable hydrogels. RSC Adv. 2019;9(48):28299–28311. doi: 10.1039/c9ra05934b.
  • Yadav N, Chauhan MK, Chauhan VS. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater Sci. 2020;8(1):84–100. doi: 10.1039/c9bm01304k.
  • Cross ER, Coulter SM, Pentlavalli S, et al. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives. Soft Matter. 2021;17(35):8001–8021. doi: 10.1039/d1sm00839k.
  • Zhu J, Han H, Ye TT, et al. Biodegradable and pH sensitive peptide based hydrogel as controlled release system for antibacterial wound dressing application. Molecules. 2018;23(12):3383. doi: 10.3390/molecules23123383.
  • Yuan J, Zhang D, He X, et al. Cationic peptide-based salt-responsive antibacterial hydrogel dressings for wound healing. Int J Biol Macromol. 2021;190:754–762. doi: 10.1016/j.ijbiomac.2021.09.019.
  • Manna S, Ghosh AK, Mandal SM. Curd-peptide based novel hydrogel inhibits biofilm formation, quorum sensing, swimming mortility of multi-antibiotic resistant clinical isolates and accelerates wound healing activity. Front Microbiol. 2019;10:951. doi: 10.3389/fmicb.2019.00951.
  • McCloskey AP, Lee M, Megaw J, et al. Investigating the in vivo antimicrobial activity of a self-assembling peptide hydrogel using a Galleria mellonella infection model. ACS Omega. 2019;4(2):2584–2589. doi: 10.1021/acsomega.8b03578.
  • Chakraborty P, Oved H, Bychenko D, et al. Nanoengineered peptide-based antimicrobial conductive supramolecular biomaterial for cardiac tissue engineering. Adv Mater. 2021;33(26):e2008715.
  • Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev. 2014;20(6):683–696. doi: 10.1089/ten.TEB.2014.0086.
  • Sahiner M, Alpaslan D, Bitlisli BO. Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym Bull. 2014;71(11):3017–3033. doi: 10.1007/s00289-014-1235-x.
  • Klimek K, Ginalska G. Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications-A review. Polymers (Basel). 2020;12(4):844. doi: 10.3390/polym12040844.
  • Ragothaman M, Kannan Villalan A, Dhanasekaran A, et al. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater Sci Eng C Mater Biol Appl. 2021;128:112328. doi: 10.1016/j.msec.2021.112328.
  • Olivetti CE, Alvarez Echazú MI, Perna O, et al. Dodecenylsuccinic anhydride modified collagen hydrogels loaded with simvastatin as skin wound dressings. J Biomed Mater Res A. 2019;107(9):1999–2012. doi: 10.1002/jbm.a.36713.
  • Thapa RK, Kiick KL, Sullivan MO. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020;103:115–128. doi: 10.1016/j.actbio.2019.12.014.
  • Neacsu I-A, Melente AE, Holban A-M, et al. Novel hydrogels based on collagen and ZnO nanoparticles with antibacterial activity for improved wound dressings. Rom Biotechnol Lett. 2019;24(2):317–323. doi: 10.25083/rbl/24.2/317.323.
  • Min JG, Sanchez Rangel UJ, Franklin A, et al. Topical antibiotic elution in a collagen-rich hydrogel successfully inhibits bacterial growth and biofilm formation in vitro. Antimicrob Agents Chemother. 2020;64(10):e00136-20. doi: 10.1128/AAC.00136-20.
  • Morya V, Walia S, Mandal BB, et al. Functional DNA based hydrogels: development, properties and biological applications. ACS Biomater Sci Eng. 2020;6(11):6021–6035. doi: 10.1021/acsbiomaterials.0c01125.
  • Gačanin J, Synatschke CV, Weil T. Biomedical applications of DNA-Based hydrogels. Adv Funct Mater. 2020;30(4):1906253.
  • Bush J, Hu C-H, Veneziano R. Mechanical properties of DNA hydrogels: towards highly programmable biomaterials. Appl Sci. 2021;11(4):1885. doi: 10.3390/app11041885.
  • Kumari S, Rajit Prasad S, Mandal D, et al. Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity. J Colloid Interface Sci. 2019;553:228–238. doi: 10.1016/j.jcis.2019.06.034.
  • Basu S, Pacelli S, Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater. 2020;105:159–169. doi: 10.1016/j.actbio.2020.01.021.
  • Jiang X, Li M, Guo X, et al. Self-assembled DNA-THPS hydrogel as a topical antibacterial agent for wound healing. ACS Appl Bio Mater. 2019;2(3):1262–1269. doi: 10.1021/acsabm.8b00818.
  • Majumdar S, Ghosh M, Mukherjee S, et al. DNA mediated graphene oxide (GO)-nanosheets dispersed supramolecular GO-DNA hydrogel: an efficient soft-milieu for simplistic synthesis of Ag-NPs@GO-DNA and gram + ve/-ve bacteria-based Ag-NPs@GO-DNA-bacteria nano-bio composites. J Mol Liquids. 2021;342:117482. doi: 10.1016/j.molliq.2021.117482.
  • Li M, Jiang X, Wang D, et al. In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application. Colloids Surf B Biointerfaces. 2019;177:370–376. doi: 10.1016/j.colsurfb.2019.02.029.
  • Bermúdez-Jiménez C, Romney MG, Roa-Flores SA, et al. Hydrogel-embedded gold nanorods activated by plasmonic photothermy with potent antimicrobial activity. Nanomedicine. 2019;22:102093. doi: 10.1016/j.nano.2019.102093.
  • Al-Enizi AM, Ahamad T, Al-Hajji AB, et al. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens. Int J Biol Macromol. 2018;109:803–809. doi: 10.1016/j.ijbiomac.2017.11.057.
  • Jayaramudu T, Varaprasad K, Pyarasani RD, et al. Hydroxypropyl methylcellulose-copper nanoparticle and its nanocomposite hydrogel films for antibacterial application. Carbohydr Polym. 2021;254:117302. doi: 10.1016/j.carbpol.2020.117302.
  • George D, Maheswari PU, Begum KMMS. Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin. React Funct Polym. 2020;148:104480. doi: 10.1016/j.reactfunctpolym.2020.104480.
  • Khalil A, Ali N, Khan A, et al. Catalytic potential of cobalt oxide and agar nanocomposite hydrogel for the chemical reduction of organic pollutants. Int J Biol Macromol. 2020;164:2922–2930. doi: 10.1016/j.ijbiomac.2020.08.140.
  • Shahzadi I, Islam M, Saeed H, et al. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int J Biol Macromol. 2022;220:1277–1286. doi: 10.1016/j.ijbiomac.2022.08.142.
  • Ganjali F, Eivazzadeh-Keihan R, Aghamirza Moghim Aliabadi H, et al. Biocompatibility and antimicrobial investigation of agar-tannic acid hydrogel reinforced with silk fibroin and zinc manganese oxide magnetic microparticles. J Inorg Organomet Polym. 2022;32(10):4057–4069. doi: 10.1007/s10904-022-02410-0.
  • Li X, Wang J, Li X, et al. A novel design of wound bandage using heparin-polyvinylpyrrolidone/TiO2 nanocomposite to improved antibacterial treatment and burn wound healing effect: in vitro and in vivo evaluation. Mat Express. 2021;11(11):1808–1818. doi: 10.1166/mex.2021.1877.
  • Zhang L, Shan C, Jiang X, et al. High hydrophilic antifouling membrane modified with capsaicin-mimic moieties via microwave assistance (MWA) for efficient water purification. Chem Eng J. 2018;338:688–699. doi: 10.1016/j.cej.2018.01.053.
  • Leite LSF, Pham C, Bilatto S, et al. Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films. ACS Sustainable Chem Eng. 2021;9(25):8539–8549. doi: 10.1021/acssuschemeng.1c01774.
  • Feng X, Hou X, Cui C, et al. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng Reg. 2021;2:57–62. doi: 10.1016/j.engreg.2021.05.002.
  • Wang L, He J, Zhu L, et al. Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. J Colloid Interface Sci. 2019;535:149–158. doi: 10.1016/j.jcis.2018.09.084.
  • Zhang J, Tan W, Li Q, et al. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing. Mar Drugs. 2021;19(9):479. doi: 10.3390/md19090479.
  • Han D, Han Y, Li J, et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl Catalysis B: Environ. 2020;261:118248. doi: 10.1016/j.apcatb.2019.118248.
  • Gwon K, Han I, Lee S, et al. Novel metal-organic framework-based photocrosslinked hydrogel system for efficient antibacterial applications. ACS Appl Mater Interfaces. 2020;12(18):20234–20242. doi: 10.1021/acsami.0c03187.
  • Wang M, Huang H, Ma X, et al. Copper metal-organic framework embedded carboxymethyl chitosan-g-glutathione/polyacrylamide hydrogels for killing bacteria and promoting wound healing. Int J Biol Macromol. 2021;187:699–709. doi: 10.1016/j.ijbiomac.2021.07.139.
  • Hezari S, Olad A, Dilmaghani A. Modified gelatin/iron- based metal-organic framework nanocomposite hydrogel as wound dressing: synthesis, antibacterial activity, and camellia sinensis release. Int J Biol Macromol. 2022;218:488–505. doi: 10.1016/j.ijbiomac.2022.07.150.
  • Cao Z, Wang H, Chen J, et al. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater. 2023;20:221–242. doi: 10.1016/j.bioactmat.2022.05.025.
  • Deng Y, Hu J, Qu Z, et al. Niacin metal-organic framework-laden self-healing hydrogel for wound healing. J Biomed Nanotechnol. 2020;16(12):1719–1726. doi: 10.1166/jbn.2020.3000.
  • Lu S, Ren X, Guo T, et al. Controlled release of iodine from cross-linked cyclodextrin metal-organic frameworks for prolonged periodontal pocket therapy. Carbohydr Polym. 2021;267:118187. doi: 10.1016/j.carbpol.2021.118187.
  • Song J, Zhang C, Kong S, et al. Novel chitosan based metal-organic polyhedrons/enzyme hybrid hydrogel with antibacterial activity to promote wound healing. Carbohydr Polym. 2022;291:119522. doi: 10.1016/j.carbpol.2022.119522.
  • Taghipour T, Karimipour G, Ghaedi M, et al. Mild synthesis of a Zn(II) metal organic polymer and its hybrid with activated carbon: application as antibacterial agent and in water treatment by using sonochemistry: optimization, kinetic and isotherm study. Ultrason Sonochem. 2018;41:389–396. doi: 10.1016/j.ultsonch.2017.09.056.
  • Zeynabad FB, Salehi R, Mahkam M. Design of pH-responsive antimicrobial nanocomposite as dual drug delivery system for tumor therapy. Appl Clay Sci. 2017;141:23–35. doi: 10.1016/j.clay.2017.02.015.
  • Sakthivel M, Franklin DS, Sudarsan S, et al. Investigation on pH/salt-responsive multifunctional itaconic acid based polymeric biocompatible, antimicrobial and biodegradable hydrogels. React Funct Polym. 2018;122:9–21. doi: 10.1016/j.reactfunctpolym.2017.10.021.
  • Sattari S, Dadkhah Tehrani A, Adeli M. pH-responsive hybrid hydrogels as antibacterial and drug delivery systems. Polymers (Basel). 2018;10(6):660. doi: 10.3390/polym10060660.
  • Garcia C, Gallardo A, López D, et al. Smart pH-responsive antimicrobial hydrogel scaffolds prepared by additive manufacturing. ACS Appl Bio Mater. 2018;1(5):1337–1347. doi: 10.1021/acsabm.8b00297.
  • Wang J, Chen XY, Zhao Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano. 2019;13(10):11686–11697. doi: 10.1021/acsnano.9b05608.
  • Chen N, Wang H, Ling C, et al. Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydr Polym. 2019;225:115207. doi: 10.1016/j.carbpol.2019.115207.
  • Chandna S, Thakur NS, Kaur R, et al. Lignin–bimetallic nanoconjugate doped pH-responsive hydrogels for laser-assisted antimicrobial photodynamic therapy. Biomacromolecules. 2020;21(8):3216–3230. doi: 10.1021/acs.biomac.0c00695.
  • Liu Y, Song R, Zhang X, et al. Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int J Biol Macromol. 2020;161:1405–1413. doi: 10.1016/j.ijbiomac.2020.08.051.
  • Hu C, Long L, Cao J, et al. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem Eng J. 2021;411:128564. doi: 10.1016/j.cej.2021.128564.
  • Xian S, Webber MJ. Temperature-responsive supramolecular hydrogels. J Mater Chem B. 2020;8(40):9197–9211. doi: 10.1039/d0tb01814g.
  • Park HH, Srisombat LO, Jamison AC, et al. Temperature-responsive hydrogel-coated gold nanoshells. Gels. 2018;4(2):28. doi: 10.3390/gels4020028.
  • Zhang X, Sun GH, Tian MP, et al. Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. Int J Biol Macromol. 2019;138:321–333. doi: 10.1016/j.ijbiomac.2019.07.052.
  • Pérez-Köhler B, Linardi F, Pascual G, et al. Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating. Hernia. 2020;24(6):1201–1210. doi: 10.1007/s10029-019-02096-3.
  • Boztepe C, Künkül A, Yüceer M. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly(NIPAAm-co-AAc)-PEG IPN hydrogel. J Drug Deliv Sci Technol. 2020;57:101603. doi: 10.1016/j.jddst.2020.101603.
  • Nizioł M, Paleczny J, Junka A, et al. 3D printing of thermoresponsive hydrogel laden with an antimicrobial agent towards wound healing applications. Bioengineering (Basel). 2021;8(6):79. doi: 10.3390/bioengineering8060079.
  • Heffernan JM, Overstreet DJ, Vernon BL, et al. In vivo evaluation of temperature-responsive antimicrobial-loaded PNIPAAm hydrogels for prevention of surgical site infection. J Biomed Mater Res B Appl Biomater. 2022;110(1):103–114. doi: 10.1002/jbm.b.34894.
  • Liu W, Xie R, Zhu J, et al. A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. NPJ Flexible Electron. 2022;6(1):68.
  • Canaparo R, Foglietta F, Giuntini F, et al. Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules. 2019;24(10):1991. doi: 10.3390/molecules24101991.
  • Han D, Li Y, Liu X, et al. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chem Eng J. 2020;396:125194. doi: 10.1016/j.cej.2020.125194.
  • Moorcroft SCT, Roach L, Jayne DG, et al. Nanoparticle-loaded hydrogel for the light-activated release and photothermal enhancement of antimicrobial peptides. ACS Appl Mater Interfaces. 2020;12(22):24544–24554. doi: 10.1021/acsami.9b22587.
  • Wang S, Zheng H, Zhou L, et al. Injectable redox and light responsive MnO(2) hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing. Biomaterials. 2020;260:120314. doi: 10.1016/j.biomaterials.2020.120314.
  • Lima-Sousa R, de Melo-Diogo D, Alves CG, et al. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater Sci Eng C Mater Biol Appl. 2020;117:111294. doi: 10.1016/j.msec.2020.111294.
  • Li Q, Zhang Y, Huang X, et al. An NIR-II light responsive antibacterial gelation for repetitious photothermal/thermodynamic synergistic therapy. Chem Eng J. 2021;407:127200. doi: 10.1016/j.cej.2020.127200.
  • Yang N, Zhu M, Xu G, et al. A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion. J Mater Chem B. 2020;8(17):3908–3917. doi: 10.1039/d0tb00361a.
  • Wang L, Li X, Sun T, et al. Dual-functional dextran-PEG hydrogel as an antimicrobial biomedical material. Macromol Biosci. 2018;18(2):1700325. doi: 10.1002/mabi.201700325
  • Guerra AD, Rose WE, Hematti P, et al. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels. Acta Biomater. 2017;51:184–196. doi: 10.1016/j.actbio.2017.01.021.
  • Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559:23–36. doi: 10.1016/j.ijpharm.2019.01.019.
  • Tan H, Jin D, Qu X, et al. A PEG-Lysozyme hydrogel harvests multiple functions as a fit-to-shape tissue sealant for internal-use of body. Biomaterials. 2019;192:392–404. doi: 10.1016/j.biomaterials.2018.10.047.
  • Peng L, Chang L, Si M, et al. Hydrogel-coated dental device with adhesion-inhibiting and colony-suppressing properties. ACS Appl Mater Interfaces. 2020;12(8):9718–9725. doi: 10.1021/acsami.9b19873.
  • Saberi A, Sadeghi M, Alipour E. Design of AgNPs -base starch/PEG-Poly (acrylic acid) hydrogel for removal of mercury (II). J Polym Environ. 2020;28(3):906–917. doi: 10.1007/s10924-020-01651-9.
  • Tripodo G, Trapani A, Rosato A, et al. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr Polym. 2018;198:124–130. doi: 10.1016/j.carbpol.2018.06.061.
  • Kazeminava F, Arsalani N, Ahmadi R, et al. A facile approach to incorporate silver nanoparticles into solvent-free synthesized PEG-based hydrogels for antibacterial and catalytical applications. Polymer Testing. 2021;101:106909. doi: 10.1016/j.polymertesting.2020.106909.
  • Husain MSB, Gupta A, Alashwal BY, et al. Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sources, Part A: Recovery, Util Environ Eff. 2018;40(20):2388–2393. doi: 10.1080/15567036.2018.1495786.
  • Li D, Nie W, Chen L, et al. Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Adv. 2017;7(13):7973–7982. doi: 10.1039/C6RA27319J.
  • Wang K, Wang J, Li L, et al. Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method. Chem Eng J. 2019;372:216–225. doi: 10.1016/j.cej.2019.04.107.
  • Nayak S, Prasad SR, Mandal D, et al. Carbon dot cross-linked polyvinylpyrrolidone hybrid hydrogel for simultaneous dye adsorption, photodegradation and bacterial elimination from waste water. J Hazard Mater. 2020;392:122287. doi: 10.1016/j.jhazmat.2020.122287.
  • Maciejewska BM, Wychowaniec JK, Woźniak-Budych M, et al. UV cross-linked polyvinylpyrrolidone electrospun fibres as antibacterial surfaces. Sci Technol Adv Mater. 2019;20(1):979–991. doi: 10.1080/14686996.2019.1667737.
  • Tajik F, Eslahi N, Rashidi A, et al. Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. J Polym Res. 2021;28(8):316. doi: 10.1007/s10965-021-02681-0.
  • Contardi M, Kossyvaki D, Picone P, et al. Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem Eng J. 2021;409:128144. doi: 10.1016/j.cej.2020.128144.
  • Rita S, Antaryami S. Radiation synthesis of hydrogels with silver nanoparticles for use as an antimicrobial burn wound dressing. Polym Sci, Series B. 2022;64(2):188–197.
  • Oliveira MJA, Villegas GME, Motta FD, et al. Influence of gamma radiation on amphotericin B incorporated in PVP hydrogel as an alternative treatment for cutaneous leishmaniosis. Acta Trop. 2021;215:105805. doi: 10.1016/j.actatropica.2020.105805.
  • Rahmani S, Ghaemi F, Khaleghi M, et al. Synthesis of novel silver nanocomposite hydrogels based on polyurethane/poly(ethylene glycol) via aqueous extract of oak fruit and their antibacterial and mechanical properties. Polym Compos. 2021;42(12):6719–6735. doi: 10.1002/pc.26334.
  • Chen Y, Wang R, Wang Y, et al. Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. Int J Biol Macromol. 2017;98:1–11. doi: 10.1016/j.ijbiomac.2017.01.102.
  • Kamaci M. Polyurethane-based hydrogels for controlled drug delivery applications. Eur Polym J. 2020;123:109444. doi: 10.1016/j.eurpolymj.2019.109444.
  • Carayon I, Szarlej P, Gnatowski P, et al. Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose. Adv Med Sci. 2022;67(2):269–282. doi: 10.1016/j.advms.2022.05.003.
  • Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2017;66(4):159–182. doi: 10.1080/00914037.2016.1190930.
  • Yang X, Wang B, Sha D, et al. PVA/poly(hexamethylene guanidine)/gallic acid composite hydrogel films and their antibacterial performance. ACS Appl Polym Mater. 2021;3(8):3867–3877. doi: 10.1021/acsapm.1c00447.
  • Suflet DM, Popescu I, Pelin IM, et al. Dual cross-linked chitosan/PVA hydrogels containing silver nanoparticles with antimicrobial properties. Pharmaceutics. 2021;13(9):1461. doi: 10.3390/pharmaceutics13091461.
  • Hussein Y, Loutfy SA, Kamoun EA, et al. Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: preparation and in vitro bioevaluation. Int J Biol Macromol. 2021;170:107–122. doi: 10.1016/j.ijbiomac.2020.12.133.
  • Cao J, He G, Ning X, et al. Preparation and properties of O-chitosan quaternary ammonium salt/polyvinyl alcohol/graphene oxide dual self-healing hydrogel. Carbohydr Polym. 2022;287:119318. doi: 10.1016/j.carbpol.2022.119318.
  • Iqbal DN, Shafiq S, Khan SM, et al. Novel chitosan/guar gum/PVA hydrogel: preparation, characterization and antimicrobial activity evaluation. Int J Biol Macromol. 2020;164:499–509. doi: 10.1016/j.ijbiomac.2020.07.139.
  • Jalageri MB, Mohan Kumar GC. Hydroxyapatite reinforced polyvinyl alcohol/polyvinyl pyrrolidone based hydrogel for cartilage replacement. Gels. 2022;8(9):555. doi: 10.3390/gels8090555.
  • Yang H, Lan X, Xiong Y. In situ growth of zeolitic imidazolate framework-L in macroporous PVA/CMC/PEG composite hydrogels with synergistic antibacterial and rapid hemostatic functions for wound dressing. Gels. 2022;8(5):279. doi: 10.3390/gels8050279.
  • Li Y, Wang J, Yang Y, et al. A rose bengal/graphene oxide/PVA hybrid hydrogel with enhanced mechanical properties and light-triggered antibacterial activity for wound treatment. Mater Sci Eng C Mater Biol Appl. 2021;118:111447. doi: 10.1016/j.msec.2020.111447.
  • Farid E, Kamoun EA, Taha TH, et al. PVA/CMC/attapulgite clay composite hydrogel membranes for biomedical applications: factors affecting hydrogel membranes crosslinking and bio-evaluation tests. J Polym Environ. 2022;30(11):4675–4689. doi: 10.1007/s10924-022-02538-7.
  • Ilgin P, Selcuk Zorer O, Ozay O, et al. Synthesis and characterization of 2-hydroxyethylmethacrylate/2-(3-indol-yl)ethylmethacrylamide-based novel hydrogels as drug carrier with in vitro antibacterial properties. J Appl Polym Sci. 2017;134(47):45550.
  • Faccia PA, Pardini FM, Amalvy JI. Uptake and release of dexamethasone using pH-responsive poly(2-hydroxyethyl methacrylate-co-2-(diisopropylamino)ethyl methacrylate) hydrogels for potential use in ocular drug delivery. J Drug Deliv Sci Technol. 2019;51:45–54. doi: 10.1016/j.jddst.2019.02.018.
  • Montoya-Villegas KA, Ramírez-Jiménez A, Licea-Claverie Á, et al. Surface modification of polyester-fabric with hydrogels and silver nanoparticles: photochemical versus gamma irradiation methods. Materials (Basel). 2019;12(20):3284. doi: 10.3390/ma12203284.
  • Di Z, Shi Z, Ullah MW, et al. A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int J Biol Macromol. 2017;105(Pt 1):638–644. doi: 10.1016/j.ijbiomac.2017.07.075.
  • Praveen, Suzuki S, Carson CF, Saunders M, Clode PL, Myers M, Chirila TV, Baker MV. Poly(2-hydroxyethyl methacrylate) sponges doped with Ag nanoparticles as antibacterial agents. ACS Appl. Nano Mater. 2020;3(2):1630–1639. doi: 10.1021/acsanm.9b02384.
  • Chornopyshchuk R, Nagaichuk V, Gerashchenko I, et al. Antimicrobial properties of a new polymeric material based on poly(2-hydroxyethyl methacrylate). Acta Biomed. 2022;93(1):e2022012.
  • Tarawneh O, Abu Mahfouz H, Hamadneh L, et al. Assessment of persistent antimicrobial and anti-biofilm activity of p-HEMA hydrogel loaded with rifampicin and cefixime. Sci Rep. 2022;12(1):3900. doi: 10.1038/s41598-022-07953-3.
  • Paydayesh A, Heleil L, Sh Dadkhah A. Preparation and application of poly (hydroxyl ethyl methacrylate) nanocomposite hydrogels containing iron oxide nanoparticles as wound dressing. Polym Polym Compos. 2022;30:096739112110631. 09673911211063106. doi: 10.1177/09673911211063106.
  • Khan A, Andleeb A, Azam M, et al. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J Biomed Mater Res B Appl Biomater. 2023;111(2):331–342. doi: 10.1002/jbm.b.35153.
  • Rezaei A, Ehtesabi H, Ebrahimi S. Incorporation of saqez essential oil into polyvinyl alcohol/chitosan bilayer hydrogel as a potent wound dressing material. Int J Biol Macromol. 2023;226:383–396. doi: 10.1016/j.ijbiomac.2022.12.036.
  • Čačić A, Amidžić Klarić D, Keser S, et al. A novel approach for the treatment of aerobic vaginitis: azithromycin liposomes-in-chitosan hydrogel. Pharmaceutics. 2023;15(5):1356. doi: 10.3390/pharmaceutics15051356.
  • Dong Y, Liu J, Chen Y, et al. Photothermal and natural activity-based synergistic antibacterial effects of Ti3C2Tx MXene-loaded chitosan hydrogel against methicillin-resistant Staphylococcus aureus. Int J Biol Macromol. 2023;240:124482. doi: 10.1016/j.ijbiomac.2023.124482.
  • Riaz Z, Baddi S, Gao F, et al. Mxene-based supramolecular composite hydrogels for antioxidant and photothermal antibacterial activities. Macromol Biosci. 2023;23(10):e2300082. doi: 10.1002/mabi.202300082.
  • Liang Z, Luo J, Liu S, et al. Injectable, antibacterial, ROS scavenging and pro-angiogenic hydrogel adhesives promote chronic wound healing in diabetes via synergistic release of NMN and Mg2+. Chem Eng J. 2023;475:146092. doi: 10.1016/j.cej.2023.146092.
  • Dudeja I, Mankoo RK, Singh A. Citric acid crosslinked ternary blended (polyvinyl alcohol, lignin, lemongrass essential oil/nanoemulsions) biopolymeric hydrogel films: structural, functional, antioxidant, antifungal and biodegradable properties. Food Measure. 2023;17(4):3774–3788. doi: 10.1007/s11694-023-01905-9.
  • Wang X, Zhao D, Li Y, et al. Collagen hydrogel with multiple antimicrobial mechanisms as anti-bacterial wound dressing. Int J Biol Macromol. 2023;232(31):123413. doi: 10.1016/j.ijbiomac.2023.123413.
  • Narciso F, Cardoso S, Monge N, et al. 3D-printed biosurfactant-chitosan antibacterial coating for the prevention of silicone-based associated infections. Colloids Surf B Biointerfaces. 2023;230:113486. doi: 10.1016/j.colsurfb.2023.113486.
  • Zhang Y, Wu C, Xu Y, et al. Conductive hydrogels with hierarchical biofilm inhibition capability accelerate diabetic ulcer healing. Chem Eng J. 2023;463:142457. doi: 10.1016/j.cej.2023.142457.
  • Chen J, Liu Y, Cheng G, et al. Tailored hydrogel delivering niobium carbide boosts ROS-scavenging and antimicrobial activities for diabetic wound healing. Small. 2022;18(27):e2201300. doi: 10.1002/smll.202201300.
  • Xu Z, Liu G, Zheng L, et al. A polyphenol-modified chitosan hybrid hydrogel with enhanced antimicrobial and antioxidant activities for rapid healing of diabetic wounds. Nano Res. 2023;16(1):905–916. doi: 10.1007/s12274-022-4792-6.
  • Li S, Dong S, Xu W, et al. Antibacterial hydrogels. Adv Sci (Weinh). 2018;5(5):1700527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.