32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lysine and citric acid based pegylated polymeric dendritic nano drug delivery carrier and their bioactivity evaluation

, , , & ORCID Icon
Received 17 Oct 2023, Accepted 31 Mar 2024, Published online: 24 Jun 2024

References

  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71(3):445–462. doi: 10.1016/j.ejpb.2008.09.023.
  • Verma RK, Garg S. Drug delivery technologies and future directions. Pharm Technol. 2001;25(2):1–14.
  • Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905. doi: 10.3390/molecules26195905.
  • Park K. Controlled drug delivery systems: past forward and future back. J Controlled Release. 2014;190:3–8.
  • Wang J, Li B, Qiu L, et al. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng. 2022;16(1):18. doi: 10.1186/s13036-022-00298-5.
  • Nguyen CK, Tran NQ, Nguyen TP, et al. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine. Adv Nat Sci Nanosci Nanotechnol. 2017;8(1):015001.
  • Nikzamir M, Hanifehpour Y, Akbarzadeh A, et al. Applications of dendrimers in nanomedicine and drug delivery: a review. J Inorg Organomet Polym. 2021;31(6):2246–2261. doi: 10.1007/s10904-021-01925-2.
  • Tian B, Hua S, Tian Y, et al. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B. 2020;8(44):10050–10064. doi: 10.1039/d0tb01869d.
  • Dhull A, Yu C, Wilmoth AH, et al. Dendrimers in corneal drug delivery: recent developments and translational opportunities. Pharmaceutics. 2023;15(6):1591. doi: 10.3390/pharmaceutics15061591.
  • Patel V, Rajani C, Paul D, et al. Dendrimers as novel drug-delivery system and its applications. In: Drug delivery systems. Chennai, India: Elsevier; 2020. p. 333–392.
  • Gauro R, Nandave M, Jain VK, et al. Advances in dendrimer-mediated targeted drug delivery to the brain. J Nanoparticle Res. 2021;23:1–20.
  • Mukherjee S, Mukherjee S, Abourehab MA, et al. Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J. 2022;177:111471.
  • Ali Y, Alqudah A, Ahmad S, et al. Macromolecules as targeted drugs delivery vehicles: an overview. Des Monomers Polym. 2019;22(1):91–97. doi: 10.1080/15685551.2019.1591681.
  • Ma M, Liu Y, Chang H, et al. Investigation of the binding behavior of PAMAMs-NH2 dendrimers with ofloxacin via NMR studies. Colloids Surf Physicochem Eng Asp. 2023;658:130625.
  • Liu M, Fréchet JM. Designing dendrimers for drug delivery. Pharm Sci Technol Today. 1999;2(10):393–401. doi: 10.1016/s1461-5347(99)00203-5.
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly (propyleneimine) dendrimer. Biomaterials. 2014;35(21):5539–5548. doi: 10.1016/j.biomaterials.2014.03.064.
  • Huang D, Wu D. Biodegradable dendrimers for drug delivery. Mater Sci Eng C. 2018;90:713–727.
  • Maiti PK, Çaǧın T, Wang G, et al. Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules. 2004;37(16):6236–6254. doi: 10.1021/ma035629b.
  • Araújo RV, de Santos SdS, Igne Ferreira E, et al. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23(11):2849. doi: 10.3390/molecules23112849.
  • Kaur D, Jain K, Mehra NK, et al. A review on comparative study of PPI and PAMAM dendrimers. J Nanoparticle Res. 2016;18:1–14.
  • Gupta V, Nayak SK. Dendrimers: a review on synthetic approaches. J Appl Pharm Sci. 2015;5(3):117–122.
  • Baig T, Nayak J, Dwivedi V, et al. A review about dendrimers: synthesis, types, characterization and applications. Int J Adv Pharm Biol Chem. 2015;4(1):44–59.
  • Cheng Y, Qu H, Ma M, et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem. 2007;42(7):1032–1038.
  • Cheng Y, Wang J, Rao T, et al. Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci. 2008;13(13):1447–1471. doi: 10.2741/2774.
  • Reymond JL. Peptide dendrimers: from enzyme models to antimicrobials and transfection reagents. Chimia (Aarau). 2021;75(6):535–538. doi: 10.2533/chimia.2021.535.
  • Bonvin E, Personne H, Paschoud T, et al. Antimicrobial peptide–peptoid hybrids with and without membrane disruption. ACS Infect Dis. 2023;9(12):2593–2606. doi: 10.1021/acsinfecdis.3c00421.
  • Patrulea V, Gan B-H, Perron K, et al. Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydr Polym. 2022;280:119025. doi: 10.1016/j.carbpol.2021.119025.
  • Al Hagbani T, Rizvi SM, Hussain T, et al. Cefotaxime mediated synthesis of gold nanoparticles: Characterization and antibacterial activity. Polymers. 2022;14(4):771.
  • Jones SR, Levinson W, Kimbrough RC, Ditmer-Schutz D. The use of cefotaxime in a community hospital. Drug Intell Clin Pharm. 1984;18(2):144–147. doi:10.1177/106002808401800211.
  • Javaid S, Ahmad NM, Mahmood A, et al. Cefotaxime loaded polycaprolactone based polymeric nanoparticles with antifouling properties for in-vitro drug release applications. Polymers (Basel). 2021;13(13):2180. doi: 10.3390/polym13132180.
  • Narayanan P, Anitha AK, Ajayakumar N, et al. Poly-lysine dendritic nanocarrier to target epidermal growth factor receptor overexpressed breast cancer for methotrexate delivery. Materials. 2022;15(3):800. doi: 10.3390/ma15030800.
  • Kaminskas LM, Kelly BD, McLeod VM, et al. Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly- l -lysine dendrimers. Mol Pharm. 2009;6(4):1190–1204.
  • Luong D, Kesharwani P, Deshmukh R, et al. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14–29. doi: 10.1016/j.actbio.2016.07.015.
  • Athanasiou V, Thimi P, Liakopoulou M, et al. Synthesis and characterization of the novel Nε-9-fluorenylmethoxycarbonyl-l-lysine N-carboxy anhydride. Synthesis of well-defined linear and branched polypeptides. Polymers (Basel). 2020;12(12):2819. doi: 10.3390/polym12122819.
  • Garg T, Singh O, Arora S, et al. Dendrimer-a novel scaffold for drug delivery. Int J Pharm Sci Rev Res. 2011;7(2):211–220.
  • Mohammadzadeh P, Shafiee Ardestani M, Mortazavi-Derazkola S, et al. Peg-citrate dendrimer second generation: is this a good carrier for imaging agents in vitro and in vivo? IET Nanobiotechnol. 2019;13(6):560–564. doi: 10.1049/iet-nbt.2018.5360.
  • Salehi A, Behpour M, Afzali D. PEG-mesoporous material modified by superparamagnetic nanoparticles as a delivery system of cefotaxime. Arch Microbiol. 2022;204(6):322. doi: 10.1007/s00203-022-02937-3.
  • Valikala V, Santhakumar I, Kannappan S. Synthesis and effect of pegylation on citric acid dendritic nano architectures anchored with cefotaxime sodium. J Photochem Photobiol B. 2019;201:111683. doi: 10.1016/j.jphotobiol.2019.111683.
  • Kumar S, Randhawa JK. Preparation and characterization of paliperidone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2013;102:562–568. doi: 10.1016/j.colsurfb.2012.08.052.
  • Liu B, Li M, Zhao Y, et al. A sensitive electrochemical immunosensor based on PAMAM dendrimer-encapsulated Au for detection of norfloxacin in animal-derived foods. Sensors. 2018;18(6):1946. doi: 10.3390/s18061946.
  • Peng Z, Li H, Ba X, et al. Synthesis of TiO2 nanoparticles in the PAMAM hydrogen network template. E-Polym. 2016;16(3):177–180. doi: 10.1515/epoly-2015-0277.
  • Jahromi LP, Ghazali M, Ashrafi H, et al. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon. 2020;6(2):e03451. doi: 10.1016/j.heliyon.2020.e03451.
  • Singhvi G, Singh M. In-vitro drug release characterization models. Int J Pharm Stud Res. 2011;2(1):77–84.
  • Permanadewi I, Kumoro AC, Wardhani DH, et al. Modelling of controlled drug release in gastrointestinal tract simulation. J Phys Conf Ser. 2019;1295(1):012063. Available from: https://iopscience.iop.org/article/. doi: 10.1088/1742-6596/1295/1/012063/meta.
  • Wojcik-Pastuszka D, Krzak J, Macikowski B, et al. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials. 2019;12(8):1202. doi: 10.3390/ma12081202.
  • Chandra S, Dietrich S, Lang H, et al. Dendrimer–doxorubicin conjugate for enhanced therapeutic effects for cancer. J Mater Chem. 2011;21(15):5729–5737.
  • Walia S, Mukhia S, Bhatt V, et al. Variability in chemical composition and antimicrobial activity of tagetes minuta L. essential oil collected from different locations of himalaya. Ind Crops Prod. 2020;150:112449.
  • Kaundal R, Kumar M, Kumar S, et al. Polyphenolic profiling, antioxidant, and antimicrobial activities revealed the quality and adaptive behavior of viola species, a dietary spice in the himalayas. Molecules. 2022;27(12):3867. doi: 10.3390/molecules27123867.
  • Kapoor S, Padwad YS. Phloretin induces G2/M arrest and apoptosis by suppressing the β-catenin signaling pathway in colorectal carcinoma cells. Apoptosis. 2023;28(5-6):810–829. doi: 10.1007/s10495-023-01826-4.
  • Wang W, Xiong W, Zhu Y, et al. Protective effect of PEGylation against poly (amidoamine) dendrimer-induced hemolysis of human red blood cells. J Biomed Mater Res. 2010;93B(1):59–64. doi: 10.1002/jbm.b.31558.
  • Lee CC, Tsai WS, Hsieh HJ, et al. Hemolytic activity of venom from crown-of-thorns starfish acanthaster planci spines. J Venom Anim Toxins Trop Dis. 2013;19:1–8.
  • Bodewein L, Schmelter F, Di Fiore S, et al. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol. 2016;305:83–92. doi: 10.1016/j.taap.2016.06.008.
  • Janaszewska A, Lazniewska J, Trzepiński P, et al. Cytotoxicity of dendrimers. Biomolecules. 2019;9(8):330. doi: 10.3390/biom9080330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.