27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats

, , , , , & ORCID Icon show all
Received 26 Jan 2024, Accepted 28 May 2024, Published online: 05 Jul 2024

References

  • Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3(10):589–601. doi: 10.1098/rsif.2006.0124.
  • Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA. 2015;112:14452–14459.
  • Hosseinkhani M, Mehrabani D, Karimfar MH, et al. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg. 2014;3(1):3–7.
  • Augustine R, Dan P, Sosnik A, et al. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017;10(10):3358–3376. doi: 10.1007/s12274-017-1549-8.
  • Echeverria Molina MI, Malollari KG, Komvopoulos K. Design challenges in polymeric scaffolds for tissue engineering. Front Bioeng Biotechnol. 2021;9:617141. https://www.frontiersin.org/articles/10.3389/fbioe.2021.617141.
  • Egorikhina MN, Timofeeva LB, Linkova DD, et al. biocompatibility study of hydrogel biopolymer scaffold with encapsulated mesenchymal stem cells. Polymers. 2023;15(6):1337. doi: 10.3390/polym15061337.
  • Hussein KH, Park K-M, Kang K-S, et al. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater Sci Eng C Mater Biol Appl. 2016;67:766–778. doi: 10.1016/j.msec.2016.05.068.
  • Pina S, Ribeiro VP, Marques CF, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12(11):1824. doi: 10.3390/ma12111824.
  • Alshaaer M, Kailani M, Ababneh N, et al. Fabrication of porous bioceramics for bone tissue applications using luffa cylindrical fibres (LCF) as template. PAC. 2017;11(1):13–20. doi: 10.2298/PAC1701013A.
  • Mitropoulou A, Markatos DN, Dimopoulos A, et al. Development and evaluation of biodegradable core-shell microfibrous and nanofibrous scaffolds for tissue engineering applications. J Mater Sci. 2024;35(1):10. doi: 10.1007/s10856-024-06777-z.
  • Del Bakhshayesh AR, Asadi N, Alihemmati A, et al. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng. 2019;13(1):85. doi: 10.1186/s13036-019-0209-9.
  • Viveros-Moreno NG, Garcia-Lorenzana M, Peña-Mercado E, et al. In vivo biocompatibility testing of nanoparticle-functionalized alginate–chitosan scaffolds for tissue engineering applications. Front Bioeng Biotechnol. 2023;11:1295626. doi: 10.3389/fbioe.2023.1295626.
  • Praphakar RA, Jeyaraj M, Mehnath S, et al. A pH-sensitive guar gum-grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. J Mater Chem B. 2018;6(10):1519–1530. doi: 10.1039/c7tb02551c.
  • Ghosal K, Augustine R, Zaszczynska A, et al. Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym. 2021;163:104895. doi: 10.1016/j.reactfunctpolym.2021.104895.
  • Dongre R, Sadasivuni K K, Deshmukh K, et al. Natural polymer based composite membranes for water purification: a review. Polym-Plast Technol Eng. 2019;58:1295–1310.
  • Pottathara YB, Tiyyagura H, Ahmad Z, et al. Graphene based aerogels: fundamentals and applications as supercapacitors. J Storage Mater. 2020;30:101549. doi: 10.1016/j.est.2020.101549.
  • Khan H, Kushwah KK, Singh S, et al. Smart technologies driven approaches to tackle COVID-19 pandemic: a review. 3 Biotech. 2021;11(2):50. doi: 10.1007/s13205-020-02581-y.
  • Verma D, Okhawilai M, Nangan S, et al. A sustainable and green approach towards the utilization of biopolymers for effective wound dressing applications: a detailed review. Nano-Struct Nano-Objects. 2024;37:101086. doi: 10.1016/j.nanoso.2023.101086.
  • Parida C, Dash SK, Das SC. Effect of fiber treatment and fiber loading on mechanical properties of Luffa-resorcinol composites. Indian J Mater Sci. 2015;2015:e658064–6. doi: 10.1155/2015/658064.
  • Mary Stella S, Vijayalakshmi U. Influence of chemically modified Luffa on the preparation of nanofiber and its biological evaluation for biomedical applications. J Biomed Mater Res. 2019;107:610–620.
  • Wang Z, Ma H, Chu B, et al. Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption. Polymer. 2017;126:470–476. doi: 10.1016/j.polymer.2017.05.068.
  • Shi X, Lan Y, Peng S, et al. Green fabrication of a multifunctional sponge as an absorbent for highly efficient and ultrafast oil–water separation. ACS Omega. 2020;5(24):14232–14241. doi: 10.1021/acsomega.9b03736.
  • Ashok KG, Kalaichelvan K, Elango V, et al. Mechanical and morphological properties of luffa/carbon fiber reinforced hybrid composites. Mater Today. 2020;33:637–641.
  • Gurjar AK, Kulkarni SM, Joladarashi S, et al. Investigation of mechanical properties of luffa fibre reinforced natural rubber composites: Implications of process parameters. J Mater Res Technol. 2024;29:4232–4244. doi: 10.1016/j.jmrt.2024.02.133.
  • Alhijazi M, Safaei B, Zeeshan Q, et al. Recent developments in luffa natural fiber composites: review. Sustainability. 2020;12(18):7683. doi: 10.3390/su12187683.
  • Chen Y, Su N, Zhang K, et al. In-depth analysis of the structure and properties of two varieties of natural luffa sponge fibers. Materials. 2017;10(5):479. doi: 10.3390/ma10050479.
  • Partap S, Kumar A, Sharma N, et al. Luffa cylindrica: an important medicinal plant. J Nat Prod Plant Resour. 2012;2:127–134.
  • Jiang P-L, Chien M-Y, Sheu M-T, et al. Dried fruit of the luffa sponge as a source of Chitin for applications as skin substitutes. Biomed Res Int. 2014;2014:458287–458289. doi: 10.1155/2014/458287.
  • Onyegbule FA, Okoye C, Ikeh C, et al. Evaluation of phytochemicals, antimicrobial, anti-inflammatory and antioxidant activities of extracts of Luffa cylindrica leaves. Planta Med. 2014;80(16):LP17. doi: 10.1055/s-0034-1395077.
  • Premalatha N, Saravanakumar SS, Sanjay MR, et al. Structural and thermal properties of chemically modified Luffa cylindrica fibers. J Nat Fibers. 2021;18(7):1037–1043. doi: 10.1080/15440478.2019.1678546.
  • Chen J-P, Yu S-C, Hsu BR-S, et al. Loofa sponge as a scaffold for the culture of human hepatocyte cell line. Biotechnol Prog. 2003;19:522–527.
  • Saeed A, Iqbal M. Loofa (Luffa cylindrica) sponge: review of development of the biomatrix as a tool for biotechnological applications. Biotechnol Prog. 2013;29(3):573–600. doi: 10.1002/btpr.1702.
  • Akinwumi KA, Eleyowo OO, Oladipo OO, et al. A review on the ethnobotanical uses, phytochemistry and pharmacological effect of Luffa cylindrinca. In: Natural drugs from plants. [Internet]. IntechOpen; 2021 [cited 2024 Mar 29]. https://www.intechopen.com/chapters/78098.
  • Wang Y, Wang X, Xiong Y, et al. Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides. Food Bioprod Process. 2019;116:98–104. doi: 10.1016/j.fbp.2019.04.014.
  • Mohapatra B, Rautray TR. Facile fabrication of Luffa cylindrica -assisted 3D hydroxyapatite scaffolds. Bioinspired Biomimetic Nanobiomater. 2021;10(2):37–44. doi: 10.1680/jbibn.20.00011.
  • Gundu S, Sahi AK, Varshney N, et al. Fabrication and in vitro characterization of luffa-based composite scaffolds incorporated with gelatin, hydroxyapatite and psyllium husk for bone tissue engineering. J Biomater Sci. 2022;33(17):2220–2248. doi: 10.1080/09205063.2022.2101415.
  • Patamia V, Fiorenza R, Brullo I, et al. A sustainable porous composite material based on loofah-halloysite for gas adsorption and drug delivery. Mater Chem Front. 2022;6:2233–2243.
  • Kim AY, Kim Y, Lee SH, et al. Effect of gelatin on osteogenic cell sheet formation using canine adipose-derived mesenchymal stem cells. Cell Transplant. 2017;26(1):115–123. doi: 10.3727/096368916X693338.
  • Afewerki S, Sheikhi A, Kannan S, et al. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioeng Transl Med. 2019;4(1):96–115. doi: 10.1002/btm2.10124.
  • Parın FN, Ullah A, Yeşilyurt A, et al. Development of PVA–psyllium husk meshes via emulsion electrospinning: preparation, characterization, and antibacterial activity. Polymers. 2022;14(7):1490. doi: 10.3390/polym14071490.
  • Agarwal PS, Poddar S, Varshney N, et al. Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties. J Biomater Appl. 2021;35(9):1132–1142. doi: 10.1177/0885328220979473.
  • Poddar S, Agarwal PS, Sahi AK, et al. Fabrication and cytocompatibility evaluation of psyllium husk (Isabgol)/gelatin composite scaffolds. Appl Biochem Biotechnol, 3 2019;188:750–768. doi: 10.1007/s12010-019-02958-7.
  • Khan MUA, Razak SIA, Ansari MNM, et al. Development of biodegradable bio-based composite for bone tissue engineering: synthesis, characterization and in vitro biocompatible evaluation. Polymers. 2021;13(21):3611. doi: 10.3390/polym13213611.
  • Zimina A, Senatov F, Choudhary R, et al. Biocompatibility and physico-chemical properties of highly porous PLA/HA scaffolds for bone reconstruction. Polymers. 2020;12(12):2938. doi: 10.3390/polym12122938.
  • Khorramirouz R, Go JL, Noble C, et al. A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold. Acta Histochem. 2018;120(3):282–291. doi: 10.1016/j.acthis.2018.02.010.
  • Liu R, Lin Y, Lin J, et al. Blood prefabrication subcutaneous small animal model for the evaluation of bone substitute materials. ACS Biomater Sci Eng. 2018;4(7):2516–2527. doi: 10.1021/acsbiomaterials.8b00323.
  • Divakar P, Moodie KL, Demidenko E, et al. Quantitative evaluation of the in vivo biocompatibility and performance of freeze-cast tissue scaffolds. Biomed Mater. 2020;15(5):055003. doi: 10.1088/1748-605X/ab316a.
  • Zawidlak-Węgrzyńska B, Fray ME, Janiczak K, et al. In vivo biocompatibility of an innovative elastomer for heart assist devices. Polymers. 2022;14(5):1002. doi: 10.3390/polym14051002.
  • Hasan K, Tamanna N, Haque M. Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Sci Hum Wellness. 2018;7(1):77–82. doi: 10.1016/j.fshw.2017.12.002.
  • Huo L, Li Q, Jiang L, et al. Porous Mg–Zn–Ca scaffolds for bone repair: a study on microstructure, mechanical properties and in vitro degradation behavior. J Mater Sci: mater Med. 2024;35(1):22. doi: 10.1007/s10856-023-06754-y.
  • Nazir R, Bruyneel A, Carr C, et al. Mechanical and degradation properties of hybrid scaffolds for tissue engineered heart valve (TEHV). J Funct Biomater. 2021;12(1):20. doi: 10.3390/jfb12010020.
  • Zhang H, Zhou L, Zhang W. Control of scaffold degradation in tissue engineering: a review. Tissue Eng B. 2014;20(5):492–502. doi: 10.1089/ten.teb.2013.0452.
  • Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online. 2020;19(1):69. doi: 10.1186/s12938-020-00810-2.
  • Ma CH, Zhang HB, Yang SM, et al. Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions. Biomicrofluidics. 2018;12(3):034106. doi: 10.1063/1.5021394.
  • Shendge PN, Belemkar S. Therapeutic potential of luffa acutangula: a review on its traditional uses, phytochemistry, pharmacology and toxicological aspects. Front Pharmacol. 2018;9:1177. doi: 10.3389/fphar.2018.01177.
  • Hatakeyama W, Taira M, Sawada T, et al. Bone regeneration of critical-size calvarial defects in rats using highly pressed nano-apatite/collagen composites. Materials. 2022;15(9):3376. doi: 10.3390/ma15093376.
  • Vasileva R, Chaprazov T. Bone healing of critical-sized femoral defects in rats treated with erythropoietin alone or in combination with xenograft. Vet Sci. 2023;10(3):196. doi: 10.3390/vetsci10030196.
  • Modulevsky DJ, Cuerrier CM, Pelling AE. Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLOS One. 2016;11(6):e0157894. doi: 10.1371/journal.pone.0157894.
  • Natsukawa T, Maeda N, Fukuda S, et al. Significant association of serum adiponectin and creatine kinase-MB levels in ST-segment elevation myocardial infarction. J Atheroscler Thromb. 2017;24(8):793–803. doi: 10.5551/jat.38232.
  • Kurapati R, Soos MP, CPK-MB: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Jul 27]. http://www.ncbi.nlm.nih.gov/books/NBK557591/.
  • Cabaniss CD. Creatine Kinase. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. [cited 2023 Aug 1]. http://www.ncbi.nlm.nih.gov/books/NBK352/.
  • Yilmaz A, Yalta K, Turgut OO, et al. Clinical importance of elevated CK-MB and troponin I levels in congestive heart failure. Adv Ther. 2006;23(6):1060–1067. doi: 10.1007/BF02850226.
  • Srikanth G, Prakash P, Tripathy N, et al. Establishment of a rat model of myocardial infarction with a high survival rate: a suitable model for evaluation of efficacy of stem cell therapy. JSRM. 2009;5(1):30–36. doi: 10.46582/jsrm.0501006.
  • Ota T, Hasegawa Y, Murata E, et al. False-positive elevation of CK-MB levels with chest pain in lung adenocarcinoma. Case Rep Oncol. 2020;13(1):100–104. doi: 10.1159/000505724.
  • Delanaye P, Cavalier E, Pottel H. Serum creatinine: not so simple! Nephron. 2017;136(4):302–308. doi: 10.1159/000469669.
  • Thammitiyagodage MG, De Silva NR, Rathnayake C, et al. Biochemical and histopathological changes in Wistar rats after consumption of boiled and un-boiled water from high and low disease prevalent areas for chronic kidney disease of unknown etiology (CKDu) in north Central Province (NCP) and its comparison with low disease prevalent Colombo, Sri Lanka. BMC Nephrol. 2020;21(1):38. doi: 10.1186/s12882-020-1693-3.
  • Chinnappan R, Mir TA, Alsalameh S, et al. Aptasensors are conjectured as promising ALT and AST diagnostic tools for the early diagnosis of acute liver injury. Life. 2023;13(6):1273. doi: 10.3390/life13061273.
  • Kim H, Han M. Association between serum liver enzymes and metabolic syndrome in korean adults. IJERPH. 2018;15(8):1658. doi: 10.3390/ijerph15081658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.