34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying

ORCID Icon, , & ORCID Icon
Received 03 Apr 2024, Accepted 31 May 2024, Published online: 07 Jul 2024

References

  • Mosedale M, Watkins PB. Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther. 2017;101(4):469–480. doi:10.1002/cpt.564.
  • Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–1323. doi:10.7150/thno.14858.
  • Sun W, Gu Z. ATP-responsive drug delivery systems. Expert Opin Drug Deliv. 2016;13:311–314.
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84. doi:10.1016/j.ces.2014.08.046.
  • Muratoglu S, Inal M, Akdag Y, et al. Electrospun nanofiber drug delivery systems and recent applications: an overview. J Drug Deliv Sci Technol. 2024;92:105342.
  • Jiffrin R, Razak SIA, Jamaludin MI, et al. Electrospun nanofiber composites for drug delivery: a review on current progresses. Polymers (Basel). 2022;14(18):3725. doi:10.3390/polym14183725.
  • Wildy M, Lu P. Electrospun nanofibers: shaping the future of controlled and responsive drug delivery. Materials (Basel). 2023;16(22):7062. doi:10.3390/ma16227062.
  • Kajdič S, Planinšek O, Gašperlin M, et al. Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol. 2019;51:672–681.
  • Yu D-G, Huang C. Electrospun biomolecule-based drug delivery systems. Biomolecules. 2023;13(7):1152. doi:10.3390/biom13071152.
  • Arya N, Chakraborty S, Dube N, et al. Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res. 2009;88B(1):17–31. doi:10.1002/jbm.b.31085.
  • Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;3(3):e24281. doi:10.4161/biom.24281.
  • Boda SK, Li X, Xie J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: a review. J Aerosol Sci. 2018;125:164–181. doi:10.1016/j.jaerosci.2018.04.002.
  • Wang J, Jansen JA, Yang F. Electrospraying: possibilities and challenges of engineering carriers for biomedical applications: a mini review. Front Chem. 2019;7:258. doi:10.3389/fchem.2019.00258.
  • Kurakula M, Naveen NR. Electrospraying: a facile technology unfolding the chitosan based drug delivery and biomedical applications. Eur Polym J. 2021;147:110326. doi:10.1016/j.eurpolymj.2021.110326.
  • Malik S, Subramanian S, Hussain T, et al. Electrosprayed nanoparticles as drug delivery systems for biomedical applications. Curr Pharm Des. 2022;28(5):368–379. doi:10.2174/1381612827666210929114621.
  • Negut I, Bita B. Polymeric micellar systems: a special emphasis on “smart” drug delivery. Pharmaceutics. 2023;15(3):976. doi:10.3390/pharmaceutics15030976.
  • Wang Q, Atluri K, Tiwari AK, et al. Exploring the application of micellar drug delivery systems in cancer nanomedicine. Pharmaceuticals. 2023;16(3):433. doi:10.3390/ph16030433.
  • Kotta S, Aldawsari HM, Badr-Eldin SM, et al. Progress in polymeric micelles for drug delivery applications. Pharmaceutics. 2022;14(8):1636. doi:10.3390/pharmaceutics14081636.
  • Jain A, Bhardwaj K, Bansal M. Polymeric micelles as drug delivery system: recent advances, approaches, applications and patents. Curr Drug Saf. 2024;19:163–171.
  • Hari SK, et al. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res. 2023;13:135–163.
  • Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci. 2022;23(7):3665. doi:10.3390/ijms23073665.
  • Malmonge SM, Daguano JKMB, Juraski AC, et al. Natural hydrogels for drug delivery systems. In Current trends in biomedical engineering. Berlin: Springer; 2023, p. 149–167.
  • Nguyen HTT, Do NHN, Lac HD, et al. Synthesis, properties, and applications of chitosan hydrogels as anti-inflammatory drug delivery system. J Porous Mater. 2023;30:655–670.
  • Liu Y, Ran Y, Ge Y, et al. pH-sensitive peptide hydrogels as a combination drug delivery system for cancer treatment. Pharmaceutics. 2022;14(3):652. doi:10.3390/pharmaceutics14030652.
  • Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11:1165–1188.
  • Chou S-F, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220(Pt B):584–591. doi:10.1016/j.jconrel.2015.09.008.
  • Nguyen-Vu VL, Huynh DP. Fabrication drug loaded polycaprolactone microparticles by electrospraying method. In: Vol. 69, IFMBE proceedings. Berlin: Springer; 2020. p. 313–317.
  • Nguyen VVL, Huynh DP. The electrosprayed insulin-loaded polycaprolactone microparticles as a drug carrier. ASEAN Eng J. 2022;12:63–68.
  • Ding L, Lee T, Wang C-H. Fabrication of monodispersed taxol-loaded particles using electrohydrodynamic atomization. J Control Release. 2005;102(2):395–413. doi:10.1016/j.jconrel.2004.10.011.
  • Siebers MC, Walboomers XF, Leeuwenburgh SCG, et al. Electrostatic spray deposition (ESD) of calcium phosphate coatings, an in vitro study with osteoblast-like cells. Biomaterials. 2004;25(11):2019–2027. doi:10.1016/j.biomaterials.2003.08.050.
  • Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater. 2010;1:22–107.
  • Gomez A. The electrospray and its application to targeted drug inhalation. Respir Care. 2002;47(12):1419–1431.
  • Huikko K, Kostiainen R, Kotiaho T. Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. Eur J Pharm Sci. 2003;20(2):149–171. doi:10.1016/s0928-0987(03)00147-7.
  • Kaerger JS, Price R. Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique. Pharm Res. 2004;21(2):372–381. doi:10.1023/b:pham.0000016252.97296.f1.
  • Gomez A, Bingham D, De Juan L, et al. Production of protein nanoparticles by electrospray drying. J Aerosol Sci. 1998;29(5–6):561–574. doi:10.1016/S0021-8502(97)10031-3.
  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–149. doi:10.2147/ijn.s596.
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. J Control Release. 2007;121(1–2):3–9. doi:10.1016/j.jconrel.2007.03.022.
  • Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53–65. doi:10.1016/j.nantod.2012.01.002.
  • Xin T, Gu Y, Cheng R, et al. Inorganic strengthened hydrogel membrane as regenerative periosteum. ACS Appl Mater Interfaces. 2017;9(47):41168–41180. doi:10.1021/acsami.7b13167.
  • Basso J, Miranda A, Nunes S, et al. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels. 2018;4(3):62. doi:10.3390/gels4030062.
  • Sirousazar M, Taleblou N, Roufegari-Nejad E. Hydrogel and nanocomposite hydrogel drug-delivery systems for treatment of cancers. In Materials for Biomedical Engineering—Nanomaterials-Based Drug Delivery. Amsterdam, The Netherlands: Elsevier; 2019. p. 293–329.
  • Tipa C, Cidade MT, Vieira T, et al. A new long-term composite drug delivery system based on thermo-responsive hydrogel and nanoclay. Nanomaterials. 2020;11(1):25. doi:10.3390/nano11010025.
  • Zhao X, Yang Y, Yu J, et al. Injectable hydrogels with high drug loading through B–N coordination and ROS-triggered drug release for efficient treatment of chronic periodontitis in diabetic rats. Biomaterials. 2022;282:121387. doi:10.1016/j.biomaterials.2022.121387.
  • Pushpamalar J, Meganathan P, Tan HL, et al. Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels. 2021;7(4):153. doi:10.3390/gels7040153.
  • Sharath NS, Misra R, Ghosh J. Application of hydrogel-based drug delivery system for pancreatic cancer. In Recent advances in nanocarriers for pancreatic cancer therapy. Amsterdam: Elsevier; 2024. p. 73–93.
  • Liu Y, Huang J, Li S, et al. Advancements in hydrogel-based drug delivery systems for the treatment of inflammatory bowel disease: a review. Biomater Sci. 2024;12(4):837–862. doi:10.1039/d3bm01645e.
  • Trinh TA, Le TMD, Nguyen HT-T, et al. pH-temperature responsive hydrogel-mediated delivery of exendin-4 encapsulated chitosan nanospheres for sustained therapeutic efficacy in type 2 diabetes mellitus. Macromol Biosci. 2023;23(11):e2300221. doi:10.1002/mabi.202300221.
  • Trinh TA, Duy Le TM, Ho HGV, et al. A novel injectable pH–temperature sensitive hydrogel containing chitosan–insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment. Biomater Sci. 2020;8(14):3830–3843. doi:10.1039/d0bm00634c.
  • Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–19.
  • Liao Y, et al. Preparation of astaxanthin-loaded composite micelles with coaxial electrospray technology for enhanced oral bioavailability and improved antioxidation capability. J Sci Food Agric. 2024;104:1408–1419.
  • Nguyen DT, Phan VHG, Lee DS, et al. Bioresorbable pH- and temperature-responsive injectable hydrogels-incorporating electrosprayed particles for the sustained release of insulin. Polym Degrad Stab. 2019;162:36–46. doi:10.1016/j.polymdegradstab.2019.02.013.
  • García-Couce J, Tomás M, Fuentes G, et al. Chitosan/pluronic F127 thermosensitive hydrogel as an injectable dexamethasone delivery carrier. Gels. 2022;8(1):44. doi:10.3390/gels8010044.
  • Garshasbi H, Salehi S, Naghib SM, et al. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front Bioeng Biotechnol. 2022;10:1126774. doi:10.3389/fbioe.2022.1126774.
  • Shan H, Yin W, Wen L, et al. An injectable thermo-sensitive hydrogel of PNICL-PEG-PNICL block copolymer as a sustained release carrier of EGCG. Eur Polym J. 2023;195:112214. doi:10.1016/j.eurpolymj.2023.112214.
  • Dethe MR, A P, Ahmed H, et al. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release. 2022;343:217–236. doi:10.1016/j.jconrel.2022.01.035.
  • Tanga S, Aucamp M, Ramburrun P. Injectable thermoresponsive hydrogels for cancer therapy: challenges and prospects. Gels. 2023;9(5):418. doi:10.3390/gels9050418.
  • Fan R, Cheng Y, Wang R, et al. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers (Basel). 2022;14(12):2379. doi:10.3390/polym14122379.
  • Le TMD, Nguyen VVL, Trinh TA, et al. Sulfonamide functionalized amino acid-based pH- and temperature-sensitive biodegradable injectable hydrogels: synthesis, physicochemical characterization and in vivo degradation kinetics. J Appl Polym Sci. 2021;138:e50488. doi: 10.1002/app.50488.
  • Barbucci R, Huynh DP, He C, et al. Novel pH/temperature-sensitive hydrogels based on poly (β-amino ester) for controlled protein delivery. In Hydrogels: Biological Properties and Applications, Milano: Springer; 2009, p. 157–177.
  • Huynh DP, Nguyen MK, Lee DS. Controlling the degradation of pH/temperature-sensitive injectable hydrogels based on poly (β-amino ester). Macromol Res. 2010;18(2):192–199. doi:10.1007/s13233-009-0182-0.
  • Huynh CT, Nguyen MK, Huynh DP, et al. Biodegradable star-shaped poly (ethylene glycol)-poly (β-amino ester) cationic pH/temperature-sensitive copolymer hydrogels. Colloid Polym Sci. 2011;289:301–308.
  • Ho DK, Nguyen DT, Thambi T, et al. Polyamide-based pH and temperature-responsive hydrogels: synthesis and physicochemical characterization. J Polym Res. 2019;26(1):1–9. doi:10.1007/s10965-018-1666-4.
  • Hoang Thi TT, Sinh LH, Huynh DP, et al. Self-assemblable polymer smart-blocks for temperature-induced injectable hydrogel in biomedical applications. Front Chem. 2020;8:19. doi:10.3389/fchem.2020.00019.
  • Ganji F, Abdekhodaie MJ, Ramazani SA. Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol. 2007;42:47–53.
  • Gohil SV, Padmanabhan A, Kan H-M, et al. Degradation-dependent protein release from enzyme sensitive injectable glycol chitosan hydrogel. Tissue Eng A. 2021;27(13–14):867–880. doi:10.1089/ten.tea.2020.0124.
  • Mohammed MA, Syeda JTM, Wasan KM, et al. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. doi:10.3390/pharmaceutics9040053.
  • Yang J-Y, Nam J-H, Park H, et al. Effects of resistance exercise and growth hormone administration at low doses on lipid metabolism in middle-aged female rats. Eur J Pharmacol. 2006;539:99–107. doi:10.1016/j.ejphar.2006.03.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.