31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 12 May 2024, Accepted 03 Jun 2024, Published online: 18 Jun 2024

References

  • Ilic I, Ilic M. International patterns and trends in the brain cancer incidence and mortality: an observational study based on the global burden of disease. Heliyon. 2023; 9(7):e18222. doi: 10.1016/j.heliyon.2023.e18222.
  • Lochhead JJ, Yang J, Ronaldson PT, et al. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 2020;11:914. doi: 10.3389/fphys.2020.00914.
  • Achar A, Myers R, Ghosh C. Drug delivery challenges in brain disorders across the blood–brain barrier: novel methods and future considerations for improved therapy. Biomedicines. 2021; 9(12):1834. doi: 10.3390/biomedicines9121834.
  • Mittapalli RK, Manda VK, Adkins CE, et al. Exploiting nutrient transporters at the blood-brain barrier to improve brain distribution of small molecules. Ther. Delivery. 2010;1:775–784.
  • Wunder A, Stehle G, Sinn H, et al. Enhanced albumin uptake by rat tumors. Int J Oncol. 1997;11(3):497–507. doi: 10.3892/ijo.11.3.497.
  • Li Y, Dai C, Hua Z, et al. A human serum albumin-indocyanine green complex offers improved tumor identification in fluorescence-guided surgery. Transl Cancer Res. 2024;13(1):437–452. doi: 10.21037/tcr-23-2338.
  • Salam R, Saliou A, Bielle F, et al. Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat Commun. 2023;14(1):441. doi: 10.1038/s41467-023-36124-9.
  • Kózmí Nski P, Halik PK, Chesori R, et al. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21:3483.
  • Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–430. doi: 10.1126/science.1147241.
  • Park J, Brust TF, Lee HJ, et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano. 2014;8(4):3347–3356. doi: 10.1021/nn405809c.
  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115. doi: 10.1021/cr400407a.
  • Hong S, Na YS, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater. 2012;22:4711–4717.
  • Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater (Deerfield Beach, Fla. 2009;21(4):431–434. doi: 10.1002/adma.200801222.
  • Taheri A, Dinarvand R, Atyabi F, et al. Enhanced anti-tumoral activity of methotrexatehuman serum albumin conjugated nanoparticles by targeting with luteinizing hormone-releasing hormone (LHRH) peptide. Int J Mol Sci. 2011;12(7):4591–4608. doi: 10.3390/ijms12074591.
  • Sharma P, Tailang M. Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. Futur J Pharm Sci. 2020;6(1):1–1. doi: 10.1186/s43094-020-00035-z.
  • Hyun H, Park J, Willis K, et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials. 2018;180:206–224. doi: 10.1016/j.biomaterials.2018.07.024.
  • Reddy LH, Sharma RK, Chuttani K, et al. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. Aaps J. 2004;6(3):e23–64. doi: 10.1208/aapsj060323.
  • Sharma P, Bhargava S, Parashar D, et al. Formulation and evaluation of nanoparticles containing cyclophosphamide. WJPR. 2017;7(1):785–798.
  • Operti MC, Bernhardt A, Grimm S, et al. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021;605:120807. doi: 10.1016/j.ijpharm.2021.120807.
  • Sharma S, Dang S. Paroxetine loaded PLGA nanoparticles. Mater Today: Proc. 2020; 28:205–210. doi: 10.1016/j.matpr.2020.01.568.
  • Lee J, Sah H. Preparation of PLGA nanoparticles by milling spongelike PLGA microspheres. Pharmaceutics. 2022; 14(8):1540. doi: 10.3390/pharmaceutics14081540.
  • Sharma P, Tailang M. Primaquine-loaded transdermal patch for treating malaria: design, development, and characterization. Futur J Pharm Sci. 2022; 8(1):43. doi: 10.1186/s43094-022-00433-5.
  • Noorain L, Nguyen V, Kim HW, et al. A machine learning approach for PLGA nanoparticles in antiviral drug delivery. Pharmaceutics. 2023;15(2):495. doi: 10.3390/pharmaceutics15020495.
  • Ako-Adounvo AM, Karla PK. Preparation and in vitro testing of brinzolamide-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles for sustained drug delivery. JCTO. 2024; 2(1):1–14. doi: 10.3390/jcto2010001.
  • Sharma P. Nanostructured biomaterials in drug delivery: current trends and upcoming possibilities. In: Engineered biomaterials: synthesis and applications. Singapore: Springer Nature Singapore; 2023. p. 261–280.
  • Duong VA, Nguyen TT, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020; 25(20):4781. doi: 10.3390/molecules25204781.
  • Sharma P, Jain V, Tailang M. Swarm intelligence and machine learning algorithms for cancer diagnosis. In: Swarm intelligence and machine learning. CRC Press; 2022. p. 34–50.
  • Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–627.
  • Jallouk AP, Palekar RU, Pan H, et al. Modifications of natural peptides for nanoparticle and drug design. In: Advances in protein chemistry and structural biology. Vol. 98. Cambridge, MA, USA Academic Press Inc.; 2015. p. 57–91.ppdoi: 10.1016/bs.apcsb.2014.12.001.
  • Nosrati H, Abhari F, Charmi J, et al. Multifunctional nanoparticles from albumin for stimuli-responsive efficient dual drug delivery. Bioorg Chem. 2019;88:102959. doi: 10.1016/j.bioorg.2019.102959.
  • Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017; 12:7291–7309. doi: 10.2147/IJN.S146315.
  • Joseph E, Singhvi G. Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. Nanomater Drug Deliv Ther. 2019; 1:91–116.
  • Herdiana Y, Wathoni N, Shamsuddin S, et al. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08674. doi: 10.1016/j.heliyon.2021.e08674.
  • Brzoska M, Langer K, Coester C, et al. Incorporation of biodegradable nanoparticles into human airway epithelium cells—in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun. 2004;318(2):562–570. doi: 10.1016/j.bbrc.2004.04.067.
  • Taheri A, Atyabi F, Nouri FS, et al. Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations. J Nanomater. 2011;2011:1–7. doi: 10.1155/2011/768201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.