47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial assay and controlled drug release studies with novel eugenol imprinted p(HEMA)-bacterial cellulose nanocomposite, designed for biomedical applications

ORCID Icon, , &
Received 07 May 2024, Accepted 06 Jun 2024, Published online: 04 Jul 2024

References

  • Khémiri I, Essghaier Hédi B, Sadfi Z, et al. The antimicrobial and wound healing potential of Opuntia ficus indica L. inermis extracted oil from Tunisia. Evid Based Complement Alternat Med. 2019;2019:9148782. doi: 10.1155/2019/9148782.
  • Diniz do Nascimento L, Barbosa de Moraes AA, Santana da Costa K, et al. Bioactive natural compounds, and antioxidant activity of essential oils from spice plants: new findings and potential applications. Biomol. 2020;10(7):988. doi: 10.3390/biom10070988.
  • Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int J Biol Macromol. 2021;(186): :656–685. doi: 10.1016/j.ijbiomac.2021.07.067.
  • Cheesman MJ, Ilanko A, Blonk B, et al. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Phcog Rev. 2017;11(22):57. doi: 10.4103/phrev.phrev_21_17.
  • Lahiri D, Dash S, Dutta R, et al. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J Biosci. 2019;44(2):52. doi: 10.1007/s12038-019-9868-4.
  • Mihai MM, Holban AM, Giurcăneanu C, et al. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom J Morphol Embryol. 2014;55(4):1401–1408. PMID: 25611273
  • Mihai MM, Dima MB, Dima B, et al. Nanomaterials for wound healing and infection control. Materials . 2019;12(13):2176. doi: 10.3390/ma12132176.
  • De Luca I, Pedram P, Moeini A, et al. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: a review. Appl. Sci. 2021;11(4):1713. doi: 10.3390/app11041713.
  • Sanla-Ead N, Jangchud A, Chonhenchob V, et al. Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packag Technol Sci. 2012;25(1):7–17. doi: 10.1002/pts.952.
  • Campa-Siqueiros PI, Madera-Santana TJ, Ayala-Zavala JF, et al. Co-electrospun nanofibers of gelatin and chitosan–polyvinyl alcohol–eugenol for wound dressing applications. Polym Bull. 2023;80(4):3611–3632. doi: 10.1007/s00289-022-04223-0.
  • Pötzinger Y, Kralisch D, Fischer D. Bacterial nanocellulose: the future of controlled drug delivery? Ther Deliv. 2017;8(9):753–761. doi: 10.4155/tde-2017-0059.
  • Weyell P, Beekmann U, Küpper C, et al. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr Polym. 2019;207:1–10. doi: 10.1016/j.carbpol.2018.11.061.
  • Avcioglu NH. Bacterial cellulose: recent progress in production and industrial applications. World J Microbiol Biotechnol. 2022;38(5):86. doi: 10.1007/s11274-022-03271-y.
  • Choi SM, Rao KM, Zo SM, et al. Bacterial cellulose and its applications. Polymers . 2022;14(6):1080. doi: 10.3390/polym14061080.
  • Shariati A, Hosseini SM, Chegini Z, et al. Graphene-based materials for inhibition of wound infection and accelerating wound healing. Biomed Pharmacother. 2023;158:114184. doi: 10.1016/j.biopha.2022.114184.
  • Zhang K, Guan X, Qiu Y, et al. A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl. Surf. Sci. 2016;389:1208–1213. doi: 10.1016/j.apsusc.2016.08.107.
  • Bakhshpour M, Yavuz H, Denizli A. Controlled release of mitomycin C from PHEMAH–Cu (II) cryogel membranes. Artif. Cells Nanomed. Biotechnol. 2018;46(sup1):946–954. doi: 10.1080/21691401.2018.1439840.
  • Avcioglu NH, Birben M, Bilkay IS. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochem. 2021;108:60–68. doi: 10.1016/j.procbio.2021.06.005.
  • Diken Gür S, Bakhshpour M, Bereli N, et al. Antibacterial effect against both Gram-positive and Gram-negative bacteria via lysozyme imprinted cryogel membranes. J Biomater Sci Polym Ed. 2021;32(8):1024–1039. doi: 10.1080/09205063.2021.1892472.
  • Tamahkar E, Bakhshpour M, Denizli A. Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J. Biomater. Sci. (Polym. Ed.). 2019;30(6):450–461. doi: 10.1080/09205063.2019.1580665.
  • Derazshamshir A, Baydemir G, Andac M, et al. Molecularly imprinted PHEMA-based cryogel for depletion of hemoglobin from human blood. Macro Chem Physics. 2010;211(6):657–668. doi: 10.1002/macp.200900425.
  • Nuchuchua O, Saesoo S, Sramala I, et al. Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res. Int. 2009;42(8):1178–1185. doi: 10.1016/j.foodres.2009.06.006.
  • Pramod K, Suneesh CV, Shanavas S, et al. Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J Anal Sci Technol. 2015;6(1):1–14. doi: 10.1186/s40543-015-0073-2.
  • Yang Y, Song LX. Study on the inclusion compounds of eugenol with α-, β-, γ- and heptakis (2,6-di-O-methyl)-β-cyclodextrins. J Incl Phenom Macrocycl Chem. 2005;53(1–2):27–33. doi: 10.1007/s10847-005-0247-4.
  • Anand T, Anbukkarasi M, Thomas PA, et al. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis. J. Drug Deliv. Sci. Technol. 2021;65:102696.
  • Atsumi T, Iwakura I, Fujisawa S, et al. Reactive oxygen species generation and photo-cytotoxicity of eugenol in solutions of various pH. Biomater. 2001;22(12):1459–1466.
  • Woranuch S, Yoksan R. Eugenol-loaded chitosan nanoparticles: I. thermal stability improvement of eugenol through encapsulation. Carbohydr Polym. 2013;96(2):578–585. doi: 10.1016/j.carbpol.2012.08.117.
  • Figueiredo AG, Figueiredo AR, Alonso-Varona A, et al. Biocompatible bacterial cellulose-poly (2-hydroxyethyl methacrylate) nanocomposite films. BioMed Res. Int. 2013;2013(1):698141.
  • Rossos AK, Banti CN, Kalampounias AG, et al. pHEMA@ AGMNA-1: a novel material for the development of antibacterial contact lens. Mater Sci Eng C Mater Biol Appl. 2020;111:110770. doi: 10.1016/j.msec.2020.110770.
  • Marchese A, Barbieri R, Coppo E, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 2017;43(6):668–689. doi: 10.1080/1040841X.2017.1295225.
  • Nazzaro F, Fratianni F, De Martino L, et al. Effect of essential oils on pathogenic bacteria. Pharmaceuticals . 2013;6(12):1451–1474. doi: 10.3390/ph6121451.
  • Huang X, Ge X, Zhou L, et al. Eugenol embedded zein and poly (lactic acid) film as active food packaging: formation, characterization, and antimicrobial effects. Food Chem. 2022;384:132482. doi: 10.1016/j.foodchem.2022.132482.
  • Ulanowska M, Olas B. Biological Properties and prospects for the application of eugenol—A review. Int J Mol Sci. 2021;22(7):3671. doi: 10.3390/ijms22073671.
  • Bennis S, Chami F, Chami N, et al. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett Appl Microbiol. 2004;38(6):454–458. doi: 10.1111/j.1472-765X.2004.01511.x.
  • Braga PC, Dal Sasso M, Culici M, et al. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia. 2007;78(6):396–400. doi: 10.1016/j.fitote.2007.02.022Get.rights and content
  • Park K. Controlled drug delivery systems: past forward and future back. JCR. 2014;190:3–8. doi: 10.1016/j.jconrel.2014.03.054.
  • Yun YH, Lee BK, Park K. Controlled Drug Delivery: historical perspective for the next generation. J Control Release. 2015;219:2–7. doi: 10.1016/j.jconrel.2015.10.005.
  • Tan J, Cho TJ, Tsai DH, et al. Surface modification of cisplatin-complexed gold nanoparticles and its influence on colloidal stability, drug loading, and drug release. Langmuir. 2018;34(1):154–163. doi: 10.1021/acs.langmuir.7b02354.
  • Almeida IF, Pereira T, Silva NHCS, et al. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eu. J. Pharm. Biopharm. 2014;86(3):332–336. doi: 10.1016/j.ejpb.2013.08.008.
  • Badshah M, Ullah H, Khan AR, et al. Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol. 2018;113:526–533. doi: 10.1016/j.ijbiomac.2018.02.135.
  • Jantarat C, Attakitmongkol K, Nichsapa S, et al. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. J. Biomater. Sci. (Polym. Ed.). 2020;31(15):1961–1976. doi: 10.1080/09205063.2020.1787602.
  • Mouro C, Simões M, Gouveia IC. Emulsion electrospun fiber mats of PCL/PVA/chitosan and eugenol for wound dressing applications. Adv. Polym. Technol. 2019;2019:1–11. doi: 10.1155/2019/9859506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.