34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Collagen-β-cyclodextrin hydrogels for advanced wound dressings: super-swelling, antibacterial action, inflammation modulation, and controlled drug release

, , , , , & ORCID Icon show all
Received 16 Apr 2024, Accepted 13 Jun 2024, Published online: 24 Jun 2024

References

  • Jacob S, Nair AB, Shah J, et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 2021;13(3):357. doi: 10.3390/pharmaceutics13030357.
  • Kasai RD, Radhika D, Archana S, et al. A review on hydrogels classification and recent developments in biomedical applications. Int J Polym Mater PO. 2022;72(13):1059–1069. doi: 10.1080/00914037.2022.2075872.
  • Geckil H, Xu F, Zhang X, et al. Engineering hydrogels as extracellular matrix mimics. Nanomedicine. 2010;5(3):469–484. doi: 10.2217/nnm.10.12.
  • Cao H, Duan L, Zhang Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig Transduct Target Ther. 2021;6(1):1–31. doi: 10.1038/s41392-021-00830-x.
  • Wang F, Gao Y, Li H, et al. Effect of natural-based biological hydrogels combined with growth factors on skin wound healing. Nanotechnol. Rev. 2022;11(1):2493–2512. doi: 10.1515/ntrev-2022-0122.
  • Aduba DC, Yang H. Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering. 2017;4(1):1.
  • Cui R, Zhang L, Ou R, et al. Polysaccharide-based hydrogels for wound dressing: design considerations and clinical applications. Front Bioeng Biotechnol. 2022;10:845735. doi: 10.3389/fbioe.2022.845735.
  • He Y, Li Y, Sun Y, et al. A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr Polym. 2021;261:117870.
  • Lei H, Zhu C, Fan D. Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair. Carbohydr Polym. 2020;239:116249. doi: 10.1016/j.carbpol.2020.116249.
  • Zhang Y, Wang Y, Li Y, et al. Application of collagen-based hydrogel in skin wound healing. Gels. 2023;9(3):185. doi: 10.3390/gels9030185.
  • Silvipriya KS, Krishna Kumar K, Bhat AR, et al. Collagen: animal sources and biomedical application. J Appl Pharm Sci. 2015;5(3):123–127.
  • Biswal T. Biopolymers for tissue engineering applications: a review. Mater Today Proc. 2021;41:397–402. doi: 10.1016/j.matpr.2020.09.628.
  • Mendoza-Novelo B, Mata-Mata JL, Vega-González A, et al. Synthesis and characterisation of protected oligourethanes as crosslinkers of collagen-based scaffolds. J Mater Chem B. 2014;2(19):2874–2882. doi: 10.1039/c3tb21832e.
  • Claudio-Rizo JA, Mendoza-Novelo B, Delgado J, et al. A new method for the preparation of biomedical hydrogels comprised of extracellular matrix and oligourethanes. Biomed Mater. 2016;11(3):035016. doi: 10.1088/1748-6041/11/3/035016.
  • Claudio-Rizo JA, Hernandez-Hernandez NG, Cano-Salazar LF, et al. Novel semi-interpenetrated networks based on collagen-polyurethane-polysaccharides in hydrogel state for biomedical applications. J Appl Polym Sci. 2021;138(4):49739.
  • Caldera-Villalobos M, Claudio-Rizo JA, Rodríguez-Estrada VA, et al. Effect of the content of starch on the biocompatibility, bacterial inhibition, and drug release performance of semi-IPN collagen-polyurethane hydrogels. J Macromol Sci A. 2023;60(2):124–134. doi: 10.1080/10601325.2023.2166842.
  • Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114(21):10940–10975. doi: 10.1021/cr500081p.
  • Crini G, Aleya L. Cyclodextrin applications in pharmacy, biology, medicine, and environment. Environ Sci Pollut Res Int. 2022;29(1):167–170. doi: 10.1007/s11356-021-16871-2.
  • Crini G, Fourmentin S, Fenyvesi É, et al. Cyclodextrins, from molecules to applications. Environ Chem Lett. 2018;16(4):1361–1375. doi: 10.1007/s10311-018-0763-2.
  • Liu S, Xie R, Cai J, et al. Crosslinking of collagen using a controlled molecular weight bio-crosslinker: β-cyclodextrin polyrotaxane multi-aldehydes. RSC Adv. 2015;5(57):46088–46094. doi: 10.1039/C5RA07036H.
  • Majumdar S, Wang X, Sommerfeld SD, et al. Cyclodextrin modulated type I collagen self-assembly to engineer biomimetic cornea implants. Adv Funct Mater. 2018;28(41):1804076. doi: 10.1002/adfm.201804076.
  • Ding C, Tian M, Wang Y, et al. Governing the aggregation of type I collagen mediated through β-cyclodextrin. Int J Biol Macromol. 2023;240:124469. doi: 10.1016/j.ijbiomac.2023.124469.
  • Tan S, Ladewig K, Fu Q, et al. Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun. 2014;35(13):1166–1184. doi: 10.1002/marc.201400080.
  • Jain M, Nowak BP, Ravoo BJ. Supramolecular hydrogels based on cyclodextrins: progress and perspectives. ChemNanoMat. 2022;8(5):e202200077. doi: 10.1002/cnma.202200077.
  • Fang G, Yang X, Chen S, et al. Cyclodextrin-based host–guest supramolecular hydrogels for local drug delivery. Coord Chem Rev. 2022;454:214352. doi: 10.1016/j.ccr.2021.214352.
  • Arslan M, Sanyal R, Sanyal A. Cyclodextrin embedded covalently crosslinked networks: synthesis and applications of hydrogels with nano-containers. Polym Chem. 2020;11(3):615–629. doi: 10.1039/C9PY01679A.
  • Pinho E, Grootveld M, Soares G, et al. Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol. 2014;34(4):328–337. doi: 10.3109/07388551.2013.794413.
  • Liu J, Tian B, Liu Y, et al. Cyclodextrin-containing hydrogels: a review of preparation method, drug delivery, and degradation behavior. Int J Mol Sci. 2021;22(24):13516. doi: 10.3390/ijms222413516.
  • Claudio-Rizo JA, Rangel-Argote M, Castellano LE, et al. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Mater Sci Eng C. 2017;79:793–801. doi: 10.1016/j.msec.2017.05.118.
  • ASTM F756-08. Standard practice for assessment of hemolytic properties of materials. [accessed 2023 Aug 23]. Available from: https://webstore.ansi.org/standards/astm/astmf75608
  • Claudio-Rizo JA, González-Lara IA, Flores-Guía TE, et al. Study of the polyacrylate interpenetration in a collagen-polyurethane matrix to prepare novel hydrogels for biomedical applications. Int J Biol Macromol. 2020;156:27–39. doi: 10.1016/j.ijbiomac.2020.04.005.
  • Milan AM, Sugars RV, Embery G, et al. Modulation of collagen fibrillogenesis by dentinal proteoglycans. Calcif Tissue Int. 2005;76(2):127–135. doi: 10.1007/s00223-004-0033-0.
  • Hu X, Wei B, Li H, et al. Preparation of the β-cyclodextrin-vitamin C (β-CD-Vc) inclusion complex under high hydrostatic pressure (HHP). Carbohydr Polym. 2012;90(2):1193–1196. doi: 10.1016/j.carbpol.2012.06.029.
  • Vedhanayagam M, Anandasadagopan S, Nair BU, et al. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. Mater Sci Eng C. 2020;108:110378. doi: 10.1016/j.msec.2019.110378.
  • Martin TA, Caliari SR, Williford PD, et al. The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography. Biomaterials. 2011;32(16):3949–3957. doi: 10.1016/j.biomaterials.2011.02.018.
  • Lopéz-Martínez EE, Claudio-Rizo JA, Caldera-Villalobos M, et al. Hydrogels for biomedicine based on semi-interpenetrating polymeric networks of collagen/guar gum: synthesis and physicochemical characterisation. Macromol Res. 2011;30:375–383.
  • Claudio-Rizo JA, Escobedo-Estrada N, Carrillo-Cortes SL, et al. Highly absorbent hydrogels comprised from interpenetrated networks of alginate–polyurethane for biomedical applications. J Mater Sci Mater Med. 2021;32(6):70. doi: 10.1007/s10856-021-06544-4.
  • Amaya-Chantaca NJ, Caldera-Villalobos M, Claudio-Rizo JA, et al. Semi-IPN hydrogels of collagen and gum arabic with antibacterial capacity and controlled release of drugs for potential application in wound healing. Prog Biomater. 2022;12(1):25–40. doi: 10.1007/s40204-022-00210-w.
  • Xiong B, Loss RD, Shields D, et al. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water. 2018;1(1):1–9. doi: 10.1038/s41545-018-0016-8.
  • Ng HW, Zhang Y, Naffa R, et al. Monitoring the degradation of collagen hydrogels by collagenase Clostridium histolyticum. Gels. 2020;6(4):46. doi: 10.3390/gels6040046.
  • Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013;22(8):407–412. doi: 10.12968/jowc.2013.22.8.407.
  • Xiao T, Yan Z, Xiao S, et al. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialisation. Stem Cell Res Ther. 2020;11(1):1–9.
  • King A, Balaji S, Le LD, et al. Regenerative wound healing: the role of interleukin-10. Adv Wound Care. 2014;3(4):315–323. doi: 10.1089/wound.2013.0461.
  • Sun X, Sui S, Ference C, et al. Antimicrobial and mechanical properties of β-cyclodextrin inclusion with essential oils in chitosan films. J Agric Food Chem. 2014;62(35):8914–8918. doi: 10.1021/jf5027873.
  • Monti D, Tampucci S, Tiwari R, et al. Local drug delivery strategies towards wound healing. Pharmaceutics. 2023;15(2):634. doi: 10.3390/pharmaceutics15020634.
  • Anju VT, Paramanantham P, Siddhardha B, et al. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus. Int J Nanomedicine. 2019;14:3861–3874. doi: 10.2147/IJN.S202734.
  • Tutak M, Gün F. Antimicrobial effect of CI basic green 4 (malachite green) against some pathogenic bacteria. Tekstil VE Konfeksiyon. 2012;22:48.
  • Leung B, Dharmaratne P, Yan W, et al. Development of thermosensitive hydrogel containing methylene blue for topical antimicrobial photodynamic therapy. J Photochem Photobiol B Biol. 2020;203:111776. doi: 10.1016/j.jphotobiol.2020.111776.
  • Nadtoka O, Virych P, Kutsevol N, et al. Hydrogels loaded with methylene blue: sorption-desorption and antimicrobial photoactivation study. Int J Polym Sci. 2020;6:9875290.
  • Moussaoui SE, Fernández-Campos F, Alonso C, et al. Topical mucoadhesive alginate-based hydrogel loading ketorolac for pain management after pharmacotherapy, ablation, or surgical removal in Condyloma acuminata. Gels. 2021;7(1):8. doi: 10.3390/gels7010008.
  • Gutierrez-Reyes JE, Caldera-Villalobos M, Claudio-Rizo JA, et al. Smart collagen/xanthan gum-based hydrogels with antibacterial effect, drug release capacity and excellent performance in vitro bioactivity for wound healing application. Biomed Mater. 2023;18(3):035011. doi: 10.1088/1748-605X/acc99c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.