40
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanospheres for curcumin delivery as a precision nanomedicine in cancer therapy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 03 May 2024, Accepted 18 Jun 2024, Published online: 03 Jul 2024

References

  • Hafez Ghoran S, Calcaterra A, Abbasi M, et al. Curcumin-based nanoformulations: a promising adjuvant towards cancer treatment. Molecules. 2022;27(16):5236. doi: 10.3390/molecules27165236.
  • Bertoncini-Silva C, Vlad A, Ricciarelli R, et al. Enhancing the bioavailability and bioactivity of curcumin for disease prevention and treatment. Antioxidants. 2024;13(3):331. doi: 10.3390/antiox13030331.
  • Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. doi: 10.3390/ijms20051033.
  • Das T, Sa G, Saha B, et al. Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem. 2010;336(1–2):85–95. doi: 10.1007/s11010-009-0269-0.
  • Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div. 2008;3(1):14. doi: 10.1186/1747-1028-3-14.
  • Aminnezhad S, Zonobian MA, Moradi Douki M, et al. Curcumin and their derivatives with anti-inflammatory, neuroprotective, anticancer, and antimicrobial activities: a review. Micro Nano Bio Aspects. 2023;2(4):25–34.
  • Mahdian M, Akbari Asrari S, Ahmadi M, et al. Dual stimuli-responsive gelatin-based hydrogel for pH and temperature-sensitive delivery of curcumin anticancer drug. J Drug Delivery Sci Technol. 2023;84:104537. doi: 10.1016/j.jddst.2023.104537.
  • Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. 2020;11:01021. doi: 10.3389/fphar.2020.01021.
  • Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res. 2023;33(1):53–64. doi: 10.1080/08982104.2022.2086567.
  • Gayathri K, Bhaskaran M, Selvam C, et al. Nano formulation approaches for curcumin delivery-a review. J Drug Delivery Sci Technol. 2023;82:104326. doi: 10.1016/j.jddst.2023.104326.
  • Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6.
  • Alexis F, Pridgen EM, Langer R, et al. Nanoparticle technologies for cancer therapy. Drug Delivery. 2010;197:55–86. doi: 10.1007/978-3-642-00477-3_2.
  • Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63(1):185–198. doi: 10.1146/annurev-med-040210-162544.
  • Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233(4):2902–2910. doi: 10.1002/jcp.26029.
  • Moosavian SA, Sathyapalan T, Jamialahmadi T, et al. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: a state-of-the-art review. Bioinorg Chem Appl. 2021;2021:4041415–4041413. doi: 10.1155/2021/4041415.
  • Moosavian SA, Sahebkar A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett. 2019;448:144–154. doi: 10.1016/j.canlet.2019.01.045.
  • Alqahtani FY, Aleanizy FS, El Tahir E, et al. Chapter 3 - Paclitaxel. Profiles of drug substances, excipients and related methodology. 2019; 44:205–238. doi: 10.1016/bs.podrm.2018.11.001.
  • Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. doi: 10.3390/molecules25163731.
  • Mehmood S, Uddin MA, Yu H, et al. Study on fully cross-linked poly (cyclotriphosphazene-co-epigallocatechin) nanospheres and their application as drug delivery carriers. Int J Polym Mater Polym Biomater. 2024;73(6):432–441. doi: 10.1080/00914037.2023.2175825.
  • Ratan C, Arian AM, Rajendran R, et al. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater. 2023;18(5):052008. doi: 10.1088/1748-605X/acf0af.
  • Baghaban-Eslaminejad M, Oryan A, Kamali A. Chapter 25 - The role of nanomedicine, nanotechnology, and nanostructures on oral bone healing, modeling, and remodeling. In: Andronescu E, Grumezescu AM, editors. Nanostructures for oral medicine. Amsterdam, The Netherlands: Elsevier; 2017; p. 777–832.
  • Li W, Ma T, He T, et al. Cancer cell membrane–encapsulated biomimetic nanoparticles for tumor immuno-photothermal therapy. Chem Eng J. 2023;463:142495. doi: 10.1016/j.cej.2023.142495.
  • Badran A, Mesmar J, Wehbe N, et al. Curcumin-based nanoformulations to target breast cancer: current trends and challenges. Curr Nanomater. 2023;8(1):3–22. doi: 10.2174/2405461506666210831145230.
  • Sardou HS, Nazari SE, Abbaspour M, et al. Nano-curcumin formulations for targeted therapy of colorectal cancer. J Drug Delivery Sci Technol. 2023;88:104943. doi: 10.1016/j.jddst.2023.104943.
  • Ostróżka-Cieślik A, Sarecka-Hujar B. Chapter 7 - The use of nanotechnology in modern pharmacotherapy. In: Grumezescu AM, editor. Multifunctional systems for combined delivery, biosensing and diagnostics. Amsterdam, The Netherlands: Elsevier; 2017. p. 139–158.
  • García MC. 4 - Nano- and microparticles as drug carriers. In: Seyfoddin A, Dezfooli SM, Greene CA. Engineering drug delivery systems. Cambridgeshire (UK): Woodhead Publishing; 2020. p. 71–110.
  • Gupta M, Sharma V, Chauhan NS. Chapter 16 - Nanotechnology for oral delivery of anticancer drugs: an insight potential. In: Andronescu E, Grumezescu AM, editors. Nanostructures for oral medicine. Amsterdam, The Netherlands: Elsevier; 2017. p. 467–510.
  • Bansal SS, Goel M, Aqil F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–1171. doi: 10.1158/1940-6207.CAPR-10-0006.
  • Ravindranath V, Chandrasekhara N. Metabolism of curcumn-studies with [3H] curcumin. Toxicology. 1981;22(4):337–344. doi: 10.1016/0300-483x(81)90027-5.
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–818. doi: 10.1021/mp700113r.
  • Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009;29(10):3867–3875.
  • Sobh R, Mohamed W, Moustafa A, et al. Encapsulation of curcumin and curcumin derivative in polymeric nanospheres. Polym-Plast Technol Eng. 2015;54(14):1457–1467. doi: 10.1080/03602559.2014.1003230.
  • Arunraj T, Rejinold NS, Mangalathillam S, et al. Synthesis, characterization and biological activities of curcumin nanospheres. J Biomed Nanotechnol. 2014;10(2):238–250. doi: 10.1166/jbn.2014.1786.
  • Athar T. Chapter 17 - Smart precursors for smart nanoparticles. In: Ahmed W, Jackson MJ. Emerging nanotechnologies for manufacturing. 2nd ed. Boston (MA): William Andrew Publishing; 2015. p. 444–538.
  • Prakash S, Yeom J. Chapter 4 - Advanced fabrication methods and techniques. In: Prakash S, Yeom J, editors. Nanofluidics and microfluidics. Norwich (NY): William Andrew Publishing; 2014. p. 87–170.
  • Sciammarella FM, Sciammarella CA, Lamberti L. Chapter 17 - Nano-holographic interferometry for in-vivo observations. In: Shaked NT, Zalevsky Z, Satterwhite LL, editors. Biomedical optical phase microscopy and nanoscopy. Oxford: Academic Press; 2013. p. 353–385.
  • Shi D, Guo Z, Bedford N. 9 - Nanobiological materials. In: Shi D, Guo Z, Bedford N, editors. Nanomaterials and devices. Oxford: William Andrew Publishing; 2015. p. 215–253.
  • Gibaldi M, Perrier D. Route of administration and drug disposition. Drug Metab Rev. 1974;3(2):185–199. doi: 10.3109/03602537408993742.
  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed. 2007;2(3):289–300.
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):20. doi: 10.1186/s40824-019-0166-x.
  • Levy O, Han E, Ngai J, et al. Chapter 12 - Micro/nano-engineering of cells for delivery of therapeutics. In: Karp JM, Zhao W, editors. Micro- and nanoengineering of the cell surface. Oxford: William Andrew Publishing; 2014. p. 253–279.
  • Attenello F, Raza SM, Dimeco F, et al. Chapter 22 - Chemotherapy for brain tumors with polymer drug delivery. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology. Vol. 104. Amsterdam, the Netherlands: Elsevier; 2012. p. 339–353.
  • Ahmadi A, Jamialahmadi T, Sahebkar A. Polyphenols and atherosclerosis: a critical review of clinical effects on LDL oxidation. Pharmacol Res. 2022;184:106414. doi: 10.1016/j.phrs.2022.106414.
  • Bagheri H, Ghasemi F, Barreto GE, et al. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors. 2020;46(1):5–20. doi: 10.1002/biof.1566.
  • Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019;27(5):885–900. doi: 10.1007/s10787-019-00607-3.
  • Mohammadi A, Blesso CN, Barreto GE, et al. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 2019;66:1–16. doi: 10.1016/j.jnutbio.2018.12.005.
  • Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, et al. Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharmacol Res. 2019;147:104353. doi: 10.1016/j.phrs.2019.104353.
  • Cicero AFG, Sahebkar A, Fogacci F, et al. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur J Nutr. 2020;59(2):477–483. doi: 10.1007/s00394-019-01916-7.
  • Fereydouni N, Darroudi M, Movaffagh J, et al. Curcumin nanofibers for the purpose of wound healing. J Cell Physiol. 2019;234(5):5537–5554. doi: 10.1002/jcp.27362.
  • Heidari H, Bagherniya M, Majeed M, et al. Curcumin-piperine co-supplementation and human health: a comprehensive review of preclinical and clinical studies. Phytother Res. 2023;37(4):1462–1487. doi: 10.1002/ptr.7737.
  • Keihanian F, Saeidinia A, Bagheri RK, et al. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol. 2018;233(6):4497–4511. doi: 10.1002/jcp.26249.
  • Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2019;234(2):1165–1178. doi: 10.1002/jcp.27096.
  • Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11(10):2376. doi: 10.3390/nu11102376.
  • Hamzehzadeh L, Atkin SL, Majeed M, et al. The versatile role of curcumin in cancer prevention and treatment: a focus on PI3K/AKT pathway. J Cell Physiol. 2018;233(10):6530–6537. doi: 10.1002/jcp.26620.
  • Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine. 2010 Mar;17(3–4):269–73. doi: 10.1016/j.phymed.2009.05.020. Epub 2009 Jul 3. PMID: 19577457.
  • Marjaneh RM, Rahmani F, Hassanian SM, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol. 2018;233(10):6785–6798. doi: 10.1002/jcp.26538.
  • Rezaee R, Momtazi AA, Monemi A, et al. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res. 2017;117:218–227. doi: 10.1016/j.phrs.2016.12.037.
  • Zahedi M, Izadi HS, Arghidash F, et al. The effect of curcumin on hypoxia in the tumour microenvironment as a regulatory factor in cancer. Arch Med Sci. 2023;19(6):1616–1629.
  • Unlu A, Nayir E, Kalenderoglu MD, et al. Curcumin (Turmeric) and cancer. J Buon. 2016;21(5):1050–1060.
  • Perkins S, Verschoyle RD, Hill K, et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev. 2002;11(6):535–540.
  • Lu M, Wu M, Huang Y, et al. Animal protein-plant protein composite nanospheres for dual-drug loading and synergistic cancer therapy. J Mater Chem B. 2022;10(20):3798–3807. doi: 10.1039/d2tb00368f.
  • Rajasekar A, Devasena T, Suresh S, et al. Curcumin nanospheres and nanorods: synthesis, characterization and anticancer activity. Process Biochem. 2022;112:248–253. doi: 10.1016/j.procbio.2021.12.007.
  • Tian Y, Liu Y, Wang L, et al. Gadolinium-doped hollow silica nanospheres loaded with curcumin for magnetic resonance imaging-guided synergistic cancer sonodynamic-chemotherapy. Mater Sci Eng C Mater Biol Appl. 2021;126:112157. doi: 10.1016/j.msec.2021.112157.
  • Li D, Shi M, Bao C, et al. Synergistically enhanced anticancer effect of codelivered curcumin and siPlk1 by stimuli-responsive α-lactalbumin nanospheres. Nanomedicine (Lond). 2019;14(5):595–612. doi: 10.2217/nnm-2018-0291.
  • Maqbool Q, Chanchal A, Srivastava A. Tween 20-assisted synthesis of uniform mesoporous silica nanospheres with wormhole porosity for efficient intracellular curcumin delivery. ChemistrySelect. 2018;3(11):3324–3329. doi: 10.1002/slct.201800386.
  • Azandeh SS, Abbaspour M, Khodadadi A, et al. Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iran J Pharm Res. 2017;16(3):868–879.
  • Pietkiewicz J, Wilk KA, Bazylińska U. In vitro studies of serum albumin interaction with poly(d,l-lactide) nanospheres loaded by hydrophobic cargo. J Pharm Biomed Anal. 2016;117:426–435. doi: 10.1016/j.jpba.2015.09.016.
  • Soni SK, Sarkar S, Selvakannan PR, et al. Intrinsic therapeutic and biocatalytic roles of ionic liquid mediated self-assembled platinum–phytase nanospheres. RSC Adv. 2015;5(77):62871–62881. doi: 10.1039/C5RA11273G.
  • Liu M, Yang J, Ao P, et al. Preparation and characterization of chitosan hollow nanospheres for anticancer drug curcumin delivery. Mater Lett. 2015;150:114–117. doi: 10.1016/j.matlet.2015.03.013.
  • Bielska D, Karewicz A, Kamiński K, et al. Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. Eur Polym J. 2013;49(9):2485–2494. doi: 10.1016/j.eurpolymj.2013.02.012.
  • Suwannateep N, Banlunara W, Wanichwecharungruang SP, et al. Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release. 2011;151(2):176–182. doi: 10.1016/j.jconrel.2011.01.011.
  • Kini S, Bahadur D, Panda D. Magnetic PLGA nanospheres: a dual therapy for cancer. IEEE Trans Magn. 2011;47(10):2882–2886. doi: 10.1109/TMAG.2011.2158403.
  • Dhanavel S, Praveena P, Narayanan V, et al. Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym Bull. 2020;77(11):5681–5696. doi: 10.1007/s00289-019-03039-9.
  • Afzali E, Eslaminejad T, Rouholamini SEY, et al. Cytotoxicity effects of curcumin loaded on chitosan alginate nanospheres on the KMBC-10 spheroids cell line. Int J Nanomed. 2021;16:579–589. doi: 10.2147/IJN.S251056.
  • Inostroza-Riquelme M, Vivanco A, Lara P, et al. Encapsulation of gold nanostructures and oil-in-water nanocarriers in microgels with biomedical potential. Molecules. 2018;23(5):1208. doi: 10.3390/molecules23051208.
  • Li H, Zhu J, Chen S, et al. Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Adv. 2017;7(89):56550–56558. doi: 10.1039/C7RA12394A.
  • Chang R, Sun L, Webster TJ. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres. Int J Nanomed. 2015;10:3351–3365. doi: 10.2147/IJN.S78756.
  • Zhang F, Zhang C, Fu S, et al. Amphiphilic cationic peptide-coated PHA nanosphere as an efficient vector for multiple-drug delivery. Nanomaterials (Basel). 2022;12(17). doi: 10.3390/nano12173024.
  • Pavitra E, Lee H, Hwang SK, et al. Evolution of highly biocompatible and thermally stable YVO(4): er(3+)/Yb(3+) upconversion mesoporous hollow nanospheriods as drug carriers for therapeutic applications. Nanomaterials (Basel). 2022;12(15):2520. doi: 10.3390/nano12152520.
  • Ghalehkhondabi V, Fazlali A, Soleymani M. Preparation of hyaluronic acid-decorated hollow meso-organosilica/poly(methacrylic acid) nanospheres with redox/pH dual responsivity for delivery of curcumin to breast cancer cells. Mater Today Chem. 2023;34:101780. doi: 10.1016/j.mtchem.2023.101780.
  • Kurdi RE, Mesmar J, Estephan M, et al. Anticancer activity of diarachidonyl phosphatidyl choline liposomal curcumin coated with chitosan against breast and pancreatic cancer cells. BioNanoScience. 2022;12(4):1158–1165. doi: 10.1007/s12668-022-01019-4.
  • Othman AK, El Kurdi R, Badran A, et al. Liposome-based nanocapsules for the controlled release of dietary curcumin: PDDA and silica nanoparticle-coated DMPC liposomes enhance the fluorescence efficiency and anticancer activity of curcumin. RSC Adv. 2022;12(18):11282–11292. doi: 10.1039/d2ra00071g.
  • Moubarak A, El Joumaa M, Slika L, et al. Curcumin-polyallyhydrocarbon nanocapsules potently suppress 1,2-dimethylhydrazine-induced colorectal cancer in mice by inhibiting Wnt/β-catenin pathway. BioNanoSci. 2021;11(2):518–525. doi: 10.1007/s12668-021-00842-5.
  • Bechnak L, Khalil C, El Kurdi R, et al. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem Photobiol Sci. 2020;19(8):1088–1098. doi: 10.1039/d0pp00032a.
  • Slika L, Moubarak A, Borjac J, et al. Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Mater Sci Eng C Mater Biol Appl. 2020;109:110550. doi: 10.1016/j.msec.2019.110550.
  • Mouslmani M, Rosenholm JM, Prabhakar N, et al. Curcumin associated poly(allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Adv. 2015;5(24):18740–18750. doi: 10.1039/C4RA12831A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.