19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dual pH/redox-responsive size-switchable polymeric nano-carrier system for tumor microenvironment DTX release

, , ORCID Icon, , &
Received 23 Jan 2024, Accepted 18 Jun 2024, Published online: 30 Jun 2024

References

  • van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14(11):1007–1017. doi: 10.1038/s41565-019-0567-y.
  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Cancer. 2014;13(11):813–827. doi: 10.1038/nrd4333.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi: 10.1038/nrc.2016.108.
  • Felice B, Prabhakaran MP, Rodríguez AP, et al. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014;41:178–195. doi: 10.1016/j.msec.2014.04.049.
  • Kang JW, So PT, Dasari RR, et al. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett. 2015;15(3):1766–1772. doi: 10.1021/nl504444w.
  • Gong F, Yang N, Wang X, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today. 2020;32:100851. doi: 10.1016/j.nantod.2020.100851.
  • Tan N, Ding Z, Chen C, et al. A new pH/redox dual stimulus-responsive formononetin imprinting material. React. Funct. Polym. 2022;170:105141. doi: 10.1016/j.reactfunctpolym.2021.105141.
  • Yang Y, Wu S, Zhang Q, et al. A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor. J. Biomater. Sci. Polym. Ed. 2023;34(2):166–183. doi: 10.1080/09205063.2022.2112310.
  • Quadrado RF, Macagnan KL, Moreira AS, et al. Redox-responsive hydrogels of thiolated pectin as vehicles for the smart release of acetaminophen. React. Funct. Polym. 2022;181:105448. doi: 10.1016/j.reactfunctpolym.2022.105448.
  • Sun T, Jiang C. Stimuli-Responsive Drug Delivery Systems Triggered by Intracellular or Subcellular Microenvironments. Adv. Drug Deliv. Rev. 2023;196:114773. doi: 10.1016/j.addr.2023.114773.
  • Yu K, Yang X, He L, et al. Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer. 2020;200:122585. doi: 10.1016/j.polymer.2020.122585.
  • Mondal A, Das S, Ali SM, et al. Bioderived Lipoic Acid-Based Dynamic Covalent Nanonetworks of Poly (disulfide) s: enhanced Encapsulation Stability and Cancer Cell-Selective Delivery of Drugs. Bioconjugate Chem. 2023;34(3):489–500. doi: 10.1021/acs.bioconjchem.2c00493.
  • García MC. Stimuli-responsive self-assembled nanocarriers based on amphiphilic block copolymers for cancer therapy.Elsevier Applications of Multifunctional Nanomaterials; 2023.365–409. : ;. p.
  • Hao Y-N, Zhang W-X, Gao Y-R, et al. State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. J Mater Chem B. 2021;9(2):250–266. doi: 10.1039/D0TB02360D.
  • Xu W, Qing X, Liu S, et al. Hollow mesoporous manganese oxides: application in cancer diagnosis and therapy. Small. 2022;18(15):2106511. doi: 10.1002/smll.202106511.
  • Liu F, Meng L, Wang H, et al. Research on preparation and antitumor activity of redox-responsive polymer micelles co-loaded with sorafenib and curcumin. J. Biomater. Sci. Polym. Ed. 2023;34(16):2179–2197. doi: 10.1080/09205063.2023.2230845.
  • Guo X, Wei X, Chen Z, et al. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci. 2020;107:100599. doi: 10.1016/j.pmatsci.2019.100599.
  • Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. small. 2011;7(10):1322–1337. doi: 10.1002/smll.201100001.
  • Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. Nanoscale. 2023;15(10):4781–4794. doi: 10.1039/D2NR05421C.
  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–2896. doi: 10.1007/s00018-009-0053-z.
  • Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–4244. doi: 10.1039/C6CS00636A.
  • Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–4493. doi: 10.1021/nn301282m.
  • Kang H, Rho S, Stiles WR, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater. 2020;9(1):1901223.
  • Liu J, Li M, Luo Z, et al. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today. 2017;15:56–90. doi: 10.1016/j.nantod.2017.06.010.
  • Kim BH, Hackett MJ, Park J, et al. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem Mater. 2014;26(1):59–71. doi: 10.1021/cm402225z.
  • Lammers T. Nanomedicine Tumor Targeting. Adv. Mater. 2024. doi: 10.1002/adma.202312169.
  • Drago SE, Utzeri MA, Mauro N, et al. Polyamidoamine-Carbon Nanodot Conjugates with Bioreducible Building Blocks: smart Theranostic Platforms for Targeted siRNA Delivery. Biomacromolecules. 2024;25(2):1191–1204. doi: 10.1021/acs.biomac.3c01185.
  • Zhang M, Chen X, Li C, et al. Charge-reversal nanocarriers: an emerging paradigm for smart cancer nanomedicine. J. Control. Release. 2020;319:46–62. doi: 10.1016/j.jconrel.2019.12.024.
  • Gao Y, Hao Y, Zhang W, et al. Microwave-triggered ionic liquid-based hydrogel dressing with excellent hyperthermia and transdermal drug delivery performance. Chem. Eng. J. 2022;429:131590. doi: 10.1016/j.cej.2021.131590.
  • D’Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–474. doi: 10.1007/s11095-005-9397-8.
  • Fan S-Y, Hao Y-N, Zhang W-X, et al. Poly (ionic liquid)-gated CuCo2S4 for pH-/thermo-triggered drug release and photoacoustic imaging. ACS Appl. Mater. Interfaces. 2020;12(8):9000–9007. doi: 10.1021/acsami.9b21292.
  • Wagner JG. Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. J. Pharm. Sci. 1969;58(10):1253–1257. doi: 10.1002/jps.2600581021.
  • Sabzi A, Rahmani A, Edalati M, et al. Targeted co-delivery of curcumin and doxorubicin by citric acid functionalized Poly (ε-caprolactone) based micelle in MDA-MB-231 cell. Colloids. Surf. B: biointerfaces. 2020;194:111225. doi: 10.1016/j.colsurfb.2020.111225.
  • Luykx DM, Peters RJ, van Ruth SM, et al. A review of analytical methods for the identification and characterization of nano delivery systems in food. J. Agric. Food Chem. 2008;56(18):8231–8247. doi: 10.1021/jf8013926.
  • Badparvar F, Marjani AP, Salehi R, et al. pH/redox responsive size-switchable intelligent nanovehicle for tumor microenvironment targeted DOX release. Sci. Rep. 2023;13(1):22475. doi: 10.1038/s41598-023-49446-x.
  • Carneiro SP, Carvalho KV, Soares R, et al. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids. Surf. B: biointerfaces. 2019;175:306–313. doi: 10.1016/j.colsurfb.2018.12.003.
  • Bootz A, Vogel V, Schubert D, et al. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004;57(2):369–375. doi: 10.1016/S0939-6411(03)00193-0.
  • Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials. 2020;10(3):496. doi: 10.3390/nano10030496.
  • Ramezanpour M, Rezaee Shirin-Abadi A. Emulsion polymerization using three types of RAFT prepared well-defined cationic polymeric stabilizers based on 2-dimethylaminoethyl methacrylate (DMAEMA): a comparative study. Colloid Polym Sci. 2021;299(7):1189–1198. doi: 10.1007/s00396-021-04836-3.
  • Kim J, Shamul JG, Shah SR, et al. Verteporfin-loaded poly (ethylene glycol)-poly (beta-amino ester)-poly (ethylene glycol) triblock micelles for cancer therapy. Biomacromolecules. 2018;19(8):3361–3370. doi: 10.1021/acs.biomac.8b00640.
  • Ni N, Wang W, Sun Y, et al. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials. 2022;287:121640. doi: 10.1016/j.biomaterials.2022.121640.
  • Zhang W-X, Hao Y-N, Gao Y-R, et al. Mutual benefit between cu (II) and polydopamine for improving Photothermal–Chemodynamic therapy. ACS Appl Mater Interfaces. 2021;13(32):38127–38137. doi: 10.1021/acsami.1c12199.
  • Yu S, He C, Ding J, et al. pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter. 2013;9(9):2637–2645. doi: 10.1039/c2sm27616j.
  • Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30(12):2180–2198. doi: 10.1016/j.biomaterials.2009.01.026.
  • Zhao J, Liu J, Xu S, et al. Graft copolymer nanoparticles with pH and reduction dual-induced disassemblable property for enhanced intracellular curcumin release. ACS Appl. Mater. Interfaces. 2013;5(24):13216–13226. doi: 10.1021/am404213w.
  • Wang H, Li Y, Bai H, et al. A cooperative dimensional strategy for enhanced nucleus-targeted delivery of anticancer drugs. Adv. Funct. Mater. 2017;27(24):1700339.
  • Hao Y-N, Zheng A-Q, Guo T-T, et al. Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment. J. Mater. Chem. B. 2019;7(43):6742–6750. doi: 10.1039/c9tb01400d.
  • Chuah LH, Roberts CJ, Billa N, et al. Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan nanoparticles. Colloids. Surf. B: biointerfaces. 2014;116:228–236. doi: 10.1016/j.colsurfb.2014.01.007.
  • Hu J, Liu Y. Cyclic strain enhances cellular uptake of nanoparticles. J. Nanomater. 2015;16(1):291.
  • Jin H, Zhu T, Huang X, et al. ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: light-triggered size-reducing and enhanced tumor penetration. Biomaterials. 2019;211:68–80. doi: 10.1016/j.biomaterials.2019.04.029.
  • Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell. Biol. Int. 2015;39(8):881–890. doi: 10.1002/cbin.10459.
  • Chen F, Zhang J, Wang L, et al. Tumor pH e-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale. 2015;7(38):15763–15779. doi: 10.1039/c5nr04612b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.