0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of itraconazole ocular delivery system using β-cyclodextrin complexation incorporated into dissolving microneedles for potential improvement treatment of fungal keratitis

, , , , , , , , , & ORCID Icon show all
Received 18 Jan 2024, Accepted 27 Jun 2024, Published online: 31 Jul 2024

References

  • Ansari Z, Miller D, Galor A. Current thoughts in fungal keratitis: diagnosis and treatment. Curr Fungal Infect Rep. 2013;7(3):209–218. doi: 10.1007/s12281-013-0150-1.
  • Permana AD, Utami RN, Layadi P, et al. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021;602:120623. doi: 10.1016/j.ijpharm.2021.120623.
  • Suriyaamporn P, Opanasopit P, Rangsimawong W, et al. Optimal design of novel microemulsions-based two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection. Pharmaceutics. 2022;14(3):472. doi: 10.3390/pharmaceutics14030472.
  • Brown L, Leck AK, Gichangi M, et al. The global incidence and diagnosis of fungal keratitis. Lancet Infect Dis. 2021;21(3):e49–e57. doi: 10.1016/S1473-3099(20)30448-5.
  • Voidaleski MF, Queiroz-Telles F, Itikawa HT, et al. An atypical etiology of fungal keratitis caused by Roussoella neopustulans. JoF. 2022;8(5):507. doi: 10.3390/jof8050507.
  • Ler D, Pidro A, Miokovic AP. Challenging case of treating fungal keratitis. Rom J Ophthalmol. 2022;66(1):69–74. doi: 10.22336/rjo.2022.14.
  • Awad R, Ghaith AA, Awad K, et al. Fungal keratitis: diagnosis, management, and recent advances. Clin Ophthalmol. 2024;18:85–106. doi: 10.2147/OPTH.S447138.
  • Reginatto P, De Jesus G, Rubia A, et al. Eye fungal infections : a mini review. Arch Microbiol. 2023;205(6):236. doi: 10.1007/s00203-023-03536-6.
  • Raj N, Vanathi M, Ahmed NH, et al. Recent perspectives in the management of fungal keratitis. JoF. 2021;7(11):907. doi: 10.3390/jof7110907.
  • Hossain CM, Ryan LK, Gera M, et al. Antifungals and drug resistance. Encyclopedia. 2022;2(4):1722–1737. doi: 10.3390/encyclopedia2040118.
  • Triboandas H, Pitt K, Bezerra M, et al. Itraconazole amorphous solid dispersion tablets: formulation and compaction process optimization using quality by design principles and tools. Pharmaceutics. 2022;14(11):2398. doi: 10.3390/pharmaceutics14112398.
  • Vinarov Z, Gancheva G, Burdzhiev N, et al. Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions. J. Drug Deliv. Sci. Technol. 2020;57:101688. doi: 10.1016/j.jddst.2020.101688.
  • Hoffman JJ, Arunga S, Mohamed Ahmed AHA, et al. Management of filamentous fungal keratitis: a pragmatic approach. JoF. 2022;8(10):1067. doi: 10.3390/jof8101067.
  • Mc Crudden MTC, Larrañeta E, Clark A, et al. Design, formulation, and evaluation of novel dissolving microarray patches containing rilpivirine for intravaginal delivery. Adv Healthc Mater. 2019;8(9):e1801510. doi: 10.1002/adhm.201801510.
  • Morrison PWJ, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–1315. doi: 10.4155/tde.14.75.
  • Mofidfar M, Abdi B, Ahadian S, et al. Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm. 2021;607:120924. doi: 10.1016/j.ijpharm.2021.120924.
  • Wang C, Pang Y. Nano-based eye drop: topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev. 2023;194:114721. doi: 10.1016/j.addr.2023.114721.
  • Kurniawansyah IS, Rusdiana T, Sopyan I, et al. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: optimization study by factorial design. Heliyon. 2020;6(11):e05365. doi: 10.1016/j.heliyon.2020.e05365.
  • Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399–413. doi: 10.1007/s13346-016-0292-0.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258. doi: 10.1016/j.biopha.2018.10.078.
  • Mahfud MAS, Syahirah NA, Akram M, et al. Solid dispersion incorporated into dissolving microneedles for improved antifungal activity of amphotericin B: in vivo study in a fungal keratitis model. Mol Pharm. 2023;20(12):6246–6261. doi: 10.1021/acs.molpharmaceut.3c00647.
  • Datta D, Roy G, Garg P, et al. Ocular delivery of cyclosporine A using dissolvable microneedle contact lens. J. Drug Deliv. Sci. Technol. 2022;70:103211. doi: 10.1016/j.jddst.2022.103211.
  • Albadr AA, Tekko IA, Vora LK, et al. Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections. Drug Deliv Transl Res. 2022;12(4):931–943. doi: 10.1007/s13346-021-01032-2.
  • Vora LK, Moffatt K, Tekko IA, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm. 2021;159:44–76. doi: 10.1016/j.ejpb.2020.12.006.
  • Guillot AJ, Cordeiro AS, Donnelly RF, et al. Microneedle-based delivery: an overview of current applications and trends. Pharmaceutics. 2020;12(6):569. doi: 10.3390/pharmaceutics12060569.
  • Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, et al. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673. doi: 10.1016/j.ijpharm.2020.119673.
  • H.E. Putri, R.N. Utami, E. Wahyudin, W.W. Oktaviani, M. Mudjahid, A.D. Permana, Dissolving microneedle formulation of ceftriaxone: effect of polymer concentrations on characterisation and ex vivo permeation study. J Pharm Innov. 2022;17(4):1176–1188. doi: 10.1007/s12247-021-09593-y.
  • Permana AD, Tekko IA, McCrudden MTC, et al. Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J Control Release. 2019;316:34–52. doi: 10.1016/j.jconrel.2019.10.004.
  • Sareen S, Joseph L, Mathew G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Investig. 2012;2(1):12–17. doi: 10.4103/2230-973X.96921.
  • Munnangi SR, Youssef AAA, Narala N, et al. Drug complexes: perspective from academic research and pharmaceutical market. Pharm Res. 2023;40(6):1519–1540. doi: 10.1007/s11095-023-03517-w.
  • Sandilya AA, Natarajan U, Priya MH. Molecular view into the cyclodextrin cavity: structure and hydration. ACS Omega. 2020;5(40):25655–25667. doi: 10.1021/acsomega.0c02760.
  • Charumanee S, Okonogi S, Sirithunyalug J, et al. Effect of cyclodextrin types and co-solvent on solubility of a poorly water soluble drug. Sci Pharm. 2016;84(4):694–704. doi: 10.3390/scipharm84040694.
  • Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, et al. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019;19(1):16. doi: 10.1186/s12906-019-2695-1.
  • Sun X, Zhu J, Liu C, et al. Fabrication of fucoxanthin/2-hydroxypropyl-β-cyclodextrin inclusion complex assisted by ultrasound procedure to enhance aqueous solubility, stability and antitumor effect of fucoxanthin. Ultrason Sonochem. 2022;90:106215. doi: 10.1016/j.ultsonch.2022.106215.
  • Butt SS, Badshah Y, Shabbir M, et al. Molecular docking using chimera and autodock vina software for nonbioinformaticians, JMIR Bioinforma. JMIR Bioinform Biotechnol. 2020;1(1):e14232. doi: 10.2196/14232.
  • Higuchi T, Connors KA. Phase solubility techniques, in: adv. Anal. Chem. Instrum. 1965;
  • Anjani QK, Domínguez-Robles J, Utomo E, et al. Inclusion complexes of rifampicin with native and derivatized cyclodextrins: in silico modeling, formulation, and characterization. Pharmaceuticals. 2021;15(1):20. doi: 10.3390/ph15010020.
  • Ghosh A, Biswas S, Ghosh T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J Young Pharm. 2011;3(3):205–210. doi: 10.4103/0975-1483.83759.
  • Destruel PL, Zeng N, Brignole-Baudouin F, et al. In situ gelling ophthalmic drug delivery system for the optimization of diagnostic and preoperative mydriasis: in vitro drug release, cytotoxicity and mydriasis pharmacodynamics. Pharmaceutics. 2020;12(4):360. doi: 10.3390/pharmaceutics12040360.
  • Akbari J, Saeedi M, Morteza-Semnani K, et al. The effect of tween 20, 60, and 80 on dissolution behavior of sprionolactone in solid dispersions prepared by PEG 6000. Adv Pharm Bull. 2015;5(3):435–441. doi: 10.15171/apb.2015.059.
  • L S. Studies on solubility and dissolution enhancement of itraconazole by complexation with Sulfo-Butyl7 Ether β Cyclodextrin. AJBPS. 2014;4(38):06–16. doi: 10.15272/ajbps.v4i38.592.
  • Weng J, Tong HHY, Chow SF. In vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics. 2020;12(8):732. doi: 10.3390/pharmaceutics12080732.
  • Syafika N, Azis SBA, Enggi CK, et al. Glucose-responsive microparticle-loaded dissolving microneedles for selective delivery of metformin: a proof-of-concept study. Mol Pharm. 2023;20(2):1269–1284. doi: 10.1021/acs.molpharmaceut.2c00936.
  • Li Y, Wang G, Guo Z, et al. Preparation of microcapsules coating and the study of their bionic anti-fouling performance. Materials (Basel). 2020;13(7) doi: 10.3390/ma13071669.
  • D. Elim, A.M.N. Fitri, M.A.S. ban Mahfud, N. Afika, N.A.F. Sultan, Hijrah, R.M. Asri, A.D. Permana, Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: an ex vivo proof of concept study, Colloids Surf B Biointerf. 2023;222:113018. doi: 10.1016/j.colsurfb.2022.113018.
  • Michailidou G, Papageorgiou GZ, Bikiaris DN. β-Cyclodextrin inclusion complexes of budesonide with enhanced bioavailability for COPD treatment. Appl Sci. 2021;11(24):12085. doi: 10.3390/app112412085.
  • Hidayatullah T, Nasir F, Khattak MA, et al. Hybrid dissolving microneedle-mediated delivery of ibuprofen: solubilization, fabrication, and characterization, pharmaceuticals. 2023;16:1–16. doi: 10.3390/ph16050677.
  • Mudjahid M, Nainu F, Utami RN, et al. Enhancement in site-specific delivery of chloramphenicol using bacterially sensitive microparticle loaded into dissolving microneedle : potential for enhanced effectiveness treatment of cellulitis. 2022. doi: 10.1021/acsami.2c16857.
  • Ananda PWR, Elim D, Zaman HS, et al. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine. Int J Pharm. 2021;609:121204. doi: 10.1016/j.ijpharm.2021.121204.
  • L. Rahman, R.S. Lembang, S. Lallo, S.R. Handayani, A.D. Permana, Bioadhesive dermal patch as promising approach for improved antibacterial activity of bioactive compound of Zingiber cassumunar Roxb in ex vivo Staphylococcus aureus skin infection model. J Drug Deliv Sci Technol. 2021;63:102522. doi: 10.1016/j.jddst.2021.102522.
  • Roy G, Galigama RD, Thorat VS, et al. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis. Elsevier B.V; 2019. doi: 10.1016/j.ijpharm.2019.118808.
  • Interagency coordinating committee on the validation of alternative methods (ICCVAM), recommended test method protocol : Hen’s Egg Test – Chorioallantoic Membrane (HET-CAM) Test Method. ICCVAM Test Method Eval Rep. 2010;13:B30–B38.
  • Wu Y, Vora LK, Donnelly RF, et al. Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye. Drug Deliv Transl Res. 2022;13(8):2142–2158. doi: 10.1007/s13346-022-01190-x.
  • Görgülü G, Dede B. Comparison of the molecular docking properties of three potentially active agents. Int J Comput Exp Sci Eng. 2023; doi: 10.22399/ijcesen.1147789.
  • Li H, Zhang G, Wang W, et al. Preparation, characterization, and bioavailability of host-guest inclusion complex of ginsenoside re with gamma-cyclodextrin. Molecules. 2021;26(23):7227. doi: 10.3390/molecules26237227.
  • Zafar A, Alruwaili NK, Imam SS, et al. Formulation of genistein-hp β cyclodextrin-poloxamer 188 ternary inclusion complex: solubility to cytotoxicity assessment. Pharmaceutics. 2021;13(12):1997. doi: 10.3390/pharmaceutics13121997.
  • Loh GOK, Tan YTF, Peh KK. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm Sci. 2016;11(4):536–546. doi: 10.1016/j.ajps.2016.02.009.
  • Yazdani M, Tavakoli O, Khoobi M, et al. Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity. J Incl Phenom Macrocycl Chem. 2022;102(1–2):55–64. doi: 10.1007/s10847-021-01100-7.
  • Poulson BG, Alsulami QA, Sharfalddin A, et al. Cyclodextrins: structural, chemical, and physical properties, and applications. Polysaccharides. 2021;3(1):1–31. doi: 10.3390/polysaccharides3010001.
  • Yousaf R, Abdul Razzaq F, Asghar S, et al. Cyclodextrins: an Overview of Fundamentals, Types, and Applications, in: cyclodextrins - Core Concepts New Front. 2023. doi: 10.5772/intechopen.108078.
  • Zoghbi A, Wang B. Carvedilol solubility enhancement by inclusion complexation and solid dispersion: review. J Drug Delivery Ther. 2015;5(2) doi: 10.22270/jddt.v5i2.1074.
  • Mathematical models of drug release. Strateg Modify Drug Release Pharm Syst. 2015;63–86. doi: 10.1016/b978-0-08-100092-2.00005-9.
  • Sohaimy MIHA, Isa MINM. Natural inspired carboxymethyl cellulose (Cmc) doped with ammonium carbonate (ac) as biopolymer electrolyte. Polymers (Basel). 2020;12(11):2487. doi: 10.3390/polym12112487.
  • T.P. Roska, M. Mudjahid, A.N.F. Marzaman, N.N.P. Datu, A.D. Permana, Development of chloramphenicol wound dressing protein-based microparticles in chitosan hydrogel system for improved effectiveness of dermal wound therapy, Biomater Adv. 2022;143: 213175. doi: 10.1016/j.bioadv.2022.213175.
  • He J, Zhang Z, Zheng X, et al. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics. 2021;13(4):579. doi: 10.3390/pharmaceutics13040579.
  • Larrañeta E, Moore J, Vicente-Pérez EM, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472(1–2):65–73. doi: 10.1016/j.ijpharm.2014.05.042.
  • Mudjahid, Mukarram, Meidianto Asri, Rangga, Nainu, Firzan, Dian Permana, Andi, Validation of spectrophotometric method to quantify chloramphenicol in fluid and rat skin tissue mimicking infection environment: Application to in vitro release and ex vivo dermatokinetic studies from dissolving microneedle loaded microparticle sensitive. Spectrochim Acta A Mol Biomol Spectrosc. 2023;291:122374. doi: 10.1016/j.saa.2023.122374.
  • Vijetha JR, Bhatt V, Joan Vijetha CR. A review on: formulation of nanosuspension intended for ophthalmic use. Pharma Innov J. 2019;477.
  • Güven UM, Berkman MS, Şenel B, et al. Development and in vitro/in vivo evaluation of thermo-sensitive in situ gelling systems for ocular allergy. Braz J Pharm Sci. 2019;55. doi: 10.1590/s2175-97902019000117511.
  • Singh A, Bali A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J Anal Sci Technol. 2016;7(1) doi: 10.1186/s40543-016-0105-6.
  • Wang QL, Ren JW, Chen BZ, et al. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J Ind Eng Chem. 2018;59:251–258. doi: 10.1016/j.jiec.2017.10.030.
  • Shim WS, Hwang YM, Park SG, et al. Role of polyvinylpyrrolidone in dissolving microneedle for efficient transdermal drug delivery: in vitro and clinical studies. Bulletin Korean Chem Soc. 2018;39(6):789–793. doi: 10.1002/bkcs.11476.
  • Yan Q, Wang W, Weng J, et al. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv. 2020;27(1):1147–1155. doi: 10.1080/10717544.2020.1797240.
  • González-Vázquez P, Larrañeta E, McCrudden MTC, et al. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J Control Release. 2017;265:30–40. doi: 10.1016/j.jconrel.2017.07.032.
  • Batista-Duharte A, Jorge Murillo G, Pérez UM, et al. The hen’s egg test on chorioallantoic membrane. Int J Toxicol. 2016;35(6):627–633. doi: 10.1177/1091581816672187.
  • Kristina Enggi C, Sulistiawati S, Stephanie S, et al. Development of probiotic loaded multilayer microcapsules incorporated into dissolving microneedles for potential improvement treatment of vulvovaginal candidiasis: a proof of concept study. J Colloid Interface Sci. 2023;648:203–219. doi: 10.1016/j.jcis.2023.05.165.
  • Gadziński P, Froelich A, Wojtyłko M, et al. Microneedle-based ocular drug delivery systems – recent advances and challenges. Beilstein J. Nanotechnol. 2022;13:1167–1184. doi: 10.3762/bjnano.13.98.
  • Bauleth-Ramos T, El-Sayed N, Fontana F, et al. Recent approaches for enhancing the performance of dissolving microneedles in drug delivery applications. Mater Today. 2023;63:239–287. doi: 10.1016/j.mattod.2022.12.007.
  • Kuskov A, Nikitovic D, Berdiaki A, et al. Amphiphilic Poly-N-vinylpyrrolidone nanoparticles as carriers for nonsteroidal, anti-inflammatory drugs: pharmacokinetic, anti-inflammatory, and ulcerogenic activity study. Pharmaceutics. 2022;14(5):925. doi: 10.3390/pharmaceutics14050925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.