0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration

ORCID Icon, ORCID Icon, &
Received 07 Mar 2024, Accepted 16 Jul 2024, Published online: 30 Jul 2024

References

  • Flanigan DC, Harris JD, Trinh TQ, et al. Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010;42(10):1795–1801. doi: 10.1249/MSS.0b013e3181d9eea0.
  • Chartrain NA, Gilchrist KH, Ho VB, et al. 3D bioprinting for the repair of articular cartilage and osteochondral tissue. Bioprinting. 2022;28:e00239. doi: 10.1016/j.bprint.2022.e00239.
  • Hu G, Liang Z, Fan Z, et al. Construction of 3D-bioprinted cartilage-mimicking substitute based on photo-crosslinkable Wharton’s jelly bioinks for full-thickness articular cartilage defect repair. Mater Today Bio. 2023;21:100695. doi: 10.1016/j.mtbio.2023.100695.
  • Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, et al. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. Artif Cells Nanomed Biotechnol. 2020;48(1):1089–1104. doi: 10.1080/21691401.2020.1809439.
  • Andrade R, Nunes J, Hinckel BB, et al. Cartilage restoration of patellofemoral lesions: a systematic review. Cartilage. 2021;13(1_suppl):57S–73S. doi: 10.1177/1947603519893076.
  • Kuwabara A, Cinque M, Ray T, et al. Treatment options for patellofemoral arthritis. Curr Rev Musculoskelet Med. 2022;15(2):90–106. doi: 10.1007/s12178-022-09740-z.
  • Kallingal N, Ramakrishnan R, Krishnan VK. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. J Biomater Sci Polym Ed. 2023;34(6):768–790. doi: 10.1080/09205063.2022.2145867.
  • Zheng X, Huang J, Lin J, et al. 3D bioprinting in orthopedics translational research. J Biomater Sci Polym Ed. 2019;30(13):1172–1187. doi: 10.1080/09205063.2019.1623989.
  • Rostamani H, Fakhraei O, Zamirinadaf N, et al. An overview of nasal cartilage bioprinting: from bench to bedside. J Biomater Sci Polym Ed. 2024;35:1273–1320.
  • Chiesa-Estomba CM, Aiastui A, González-Fernández I, et al. Three-dimensional bioprinting scaffolding for nasal cartilage defects: a systematic review. Tissue Eng Regen Med. 2021;18(3):343–353. doi: 10.1007/s13770-021-00331-6.
  • Farahani PK. Application of tissue engineering and biomaterials in nose surgery. JPRAS Open. 2023;40:262–272. doi: 10.1016/j.jpra.2023.11.001.
  • Lan X, Liang Y, Erkut EJN, et al. Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering. FASEB J. 2021;35(3):e21191. doi: 10.1096/fj.202002081R.
  • Koch F, Thaden O, Conrad S, et al. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J Mech Behav Biomed Mater. 2022;130:105219. doi: 10.1016/j.jmbbm.2022.105219.
  • Ebhodaghe SO. Natural polymeric scaffolds for tissue engineering applications. J Biomater Sci Polym Ed. 2021;32(16):2144–2194. doi: 10.1080/09205063.2021.1958185.
  • Abedi G, Sotoudeh A, Soleymani M, et al. A collagen–poly (vinyl alcohol) nanofiber scaffold for cartilage repair. J Biomater Sci Polym Ed. 2011;22(18):2445–2455. doi: 10.1163/092050610X540503.
  • Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, et al. Synthesis and characterization of chitosan/collagen/polycaprolactone hydrogel films with enhanced biocompatibility and hydrophilicity for artificial tendon applications. Int J Biol Macromol. 2023;253(Pt 8):127448. doi: 10.1016/j.ijbiomac.2023.127448.
  • Alimohammadi M, Fakhraei O, Moradi A, et al. Controlled release of azithromycin from polycaprolactone/chitosan nanofibrous membranes. J Drug Delivery Sci Technol. 2022;71:103246. doi: 10.1016/j.jddst.2022.103246.
  • Barceló X, Eichholz KF, Garcia O, et al. Tuning the degradation rate of alginate-based bioinks for bioprinting functional cartilage tissue. Biomedicines. 2022;10(7):1621. doi: 10.3390/biomedicines10071621.
  • Borkar T, Goenka V, Jaiswal AK. Application of poly-ε-caprolactone in extrusion-based bioprinting. Bioprinting. 2021;21:e00111. doi: 10.1016/j.bprint.2020.e00111.
  • Wu Y, Kennedy P, Bonazza N, et al. Three-dimensional bioprinting of articular cartilage: a systematic review. Cartilage. 2021;12(1):76–92. doi: 10.1177/1947603518809410.
  • Jang EJ, Patel R, Sankpal NV, et al. Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration. Eur Polym J. 2023;202:112651. doi: 10.1016/j.eurpolymj.2023.112651.
  • Kundu J, Shim JH, Jang J, et al. An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286–1297. doi: 10.1002/term.1682.
  • Sheng D, Li J, Ai C, et al. Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J Mater Chem B. 2019;7(31):4801–4810. doi: 10.1039/c9tb00837c.
  • Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, et al. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair. Int J Mol Sci. 2022;23(17):9879. doi: 10.3390/ijms23179879.
  • Navarro R, Burillo G, Adem E, et al. Effect of ionizing radiation on the chemical structure and the physical properties of polycaprolactones of different molecular weight. Polymers. 2018;10(4):397. doi: 10.3390/polym10040397.
  • Yeh C-C, Chen C-N, Li Y-T, et al. The effect of polymer molecular weight and UV radiation on physical properties and bioactivities of PCL films. Cell Polym. 2011;30(5):261–276. doi: 10.1177/026248931103000503.
  • Lam CX, Savalani MM, Teoh S-H, et al. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater. 2008;3(3):034108. doi: 10.1088/1748-6041/3/3/034108.
  • Andersons J, Modniks J, Leterrier Y, et al. Evaluation of toughness by finite fracture mechanics from crack onset strain of brittle coatings on polymers. Theor Appl Fract Mech. 2008;49(2):151–157. doi: 10.1016/j.tafmec.2007.11.002.
  • Shirvanimoghaddam K, Balaji KV, Yadav R, et al. Balancing the toughness and strength in polypropylene composites. Compos Part B Eng. 2021;223:109121. doi: 10.1016/j.compositesb.2021.109121.
  • Ruiz-Cantu L, Gleadall A, Faris C, et al. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication. 2016;8(1):015016. doi: 10.1088/1758-5090/8/1/015016.
  • Cao B, Peng R, Li Z, et al. Effects of spreading areas and aspect ratios of single cells on dedifferentiation of chondrocytes. Biomaterials. 2014;35(25):6871–6881. doi: 10.1016/j.biomaterials.2014.04.107.
  • Hui T, Wang C, Ye L. Comments on ethylenediaminetetraacetic acid contained in trypsin detaching cells for apoptosis detection. Stem Cells. 2014;32(7):1993–1994. doi: 10.1002/stem.1712.
  • Sarró E, Lecina M, Fontova A, et al. Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures. Biosens Bioelectron. 2012;31(1):257–263. doi: 10.1016/j.bios.2011.10.028.
  • Mutin M, George F, Lesaule G, et al. Reevaluation of trypsin-EDTA for endothelial cell detachment before flow cytometry analysis. Endothelium. 1996;4(4):289–295. doi: 10.3109/10623329609024704.
  • Yamashita Y, Kinoshita K, Yamazaki M. Low concentration of DMSO stabilizes the bilayer gel phase rather than the interdigitated gel phase in dihexadecylphosphatidylcholine membrane. Biochim Biophys Acta. 2000;1467(2):395–405. doi: 10.1016/s0005-2736(00)00237-6.
  • Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym. 2014;114:213–221. doi: 10.1016/j.carbpol.2014.08.008.
  • Rajaram A, Schreyer DJ, Chen DX. Use of the polycation polyethyleneimine to improve the physical properties of alginate–hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. J Biomater Sci Polym Ed. 2015;26(7):433–445. doi: 10.1080/09205063.2015.1016383.
  • Deshpande MV, Girase A, King MW. Degradation of poly (ε-caprolactone) resorbable multifilament yarn under physiological conditions. Polymers. 2023;15(18):3819. doi: 10.3390/polym15183819.
  • Fernando IS, Kim D, Nah J-W, et al. Advances in functionalizing fucoidans and alginates (bio) polymers by structural modifications: a review. Chem Eng J. 2019;355:33–48. doi: 10.1016/j.cej.2018.08.115.
  • Wang D, Yun EJ, Kim S, et al. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess Biosyst Eng. 2016;39(6):959–966. doi: 10.1007/s00449-016-1575-z.
  • Jirofti N, Mohebbi-Kalhori D, Masoumi R. Enhancing biocompatibility of PCL/PU nano-structures to control the water wettability by NaOH hydrolysis treatment for tissue engineering applications. J Ind Text. 2022;51(2_suppl):3278S–3296S. doi: 10.1177/1528083720963268.
  • Varaprasad K, Nùñez D, Ide W, et al. Development of high alginate comprised hydrogels for removal of Pb(II) ions. J Mol Liq. 2020;298:112087. doi: 10.1016/j.molliq.2019.112087.
  • Dragana DM, Jasmina JS, Bojana MO. Controlled swelling and degradation studies of alginate microbeads in dilute natrium-citrate solutions. Hem Ind. 2010;64:253–263.
  • Satheesh Kumar KV, Bindu M, Suresh S, et al. Investigation on swelling behavior of sodium alginate/black titania nanocomposite hydrogels and effect of synthesis conditions on water uptake. Results Eng. 2023;20:101460. doi: 10.1016/j.rineng.2023.101460.
  • Elberry A, Maarouf N, Solouma N, et al. FEM simulation of human eardrum to control the mechanical effect of noise in housing using insulating architectural materials. Civ Eng Res Mag. 2009;30:939–954.
  • Mahapatra C, Jin G-Z, Kim H-W. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med. 2016;13(5):538–546. doi: 10.1007/s13770-016-0059-1.
  • Stojkovska J, Bugarski B, Obradovic B. Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering. J Mater Sci Mater Med. 2010;21:2869–2879.
  • Fakhraei O, Hesaraki S, Alizadeh M. Fracture toughness and R-curve behavior of BCP/YTZP nanocomposites produced using the spark plasma sintering process. J Alloys Compd. 2017;725:623–631. doi: 10.1016/j.jallcom.2017.07.194.
  • Fakhraei O, Hesaraki S, Alizadeh M. Evaluation of biphasic calcium phosphate/nanosized 3YSZ composites as toughened materials for bone substitution. Ceram Int. 2016;42(9):11201–11208. doi: 10.1016/j.ceramint.2016.04.030.
  • Li H, Li J, Yu S, et al. The mechanical properties of tibiofemoral and patellofemoral articular cartilage in compression depend on anatomical regions. Sci Rep. 2021;11(1):6128. doi: 10.1038/s41598-021-85716-2.
  • Kerin AJ, Wisnom MR, Adams MA. The compressive strength of articular cartilage. Proc Inst Mech Eng H. 1998;212(4):273–280. doi: 10.1243/0954411981534051.
  • Lawless BM, Sadeghi H, Temple DK, et al. Viscoelasticity of articular cartilage: analysing the effect of induced stress and the restraint of bone in a dynamic environment. J Mech Behav Biomed Mater. 2017;75:293–301. doi: 10.1016/j.jmbbm.2017.07.040.
  • Sadeghi H, Espino DM, Shepherd DE. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies. Proc Inst Mech Eng H. 2015;229(2):115–123. doi: 10.1177/0954411915570372.
  • Jones B, Hung CT, Ateshian G. Biphasic analysis of cartilage stresses in the patellofemoral joint. J Knee Surg. 2015;29(2):92–98. doi: 10.1055/s-0035-1568989.
  • Fakhraei O, Hesaraki S, Alizadeh M, et al. Mechanical properties of PSZ-reinforced biphasic calcium phosphate bone substitute sintered in a conventional furnace and by microwave irradiation. Ceram Int. 2017;43(2):2403–2412. doi: 10.1016/j.ceramint.2016.11.029.
  • Naseri N, Poirier J-M, Girandon L, et al. 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv. 2016;6(8):5999–6007. doi: 10.1039/C5RA27246G.
  • Chen Y, Frith JE, Dehghan-Manshadi A, et al. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2017;75:169–174. doi: 10.1016/j.jmbbm.2017.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.