183
Views
5
CrossRef citations to date
0
Altmetric
Articles

Study of scattering characteristics for metallic spheres at terahertz frequencies

, , , &
Pages 1786-1797 | Received 28 Apr 2014, Accepted 02 Jul 2014, Published online: 31 Jul 2014

References

  • Zhong XJ, Cui TJ, Li Z, Tao YB, Lin H. Terahertz-wave scattering by perfectly electrical conducting objects. J. Electromagn. Waves Appl. 2007;21:2331–2340.10.1163/156939307783134443
  • Li Z, Cui TJ, Zhong XJ, Tao YB, Lin H. Electromagnetic scattering characteristics of PEC targets in the terahertz regime. IEEE Antennas Propag. Mag. 2009;51:39–50.
  • Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Moller C, Busch S, Koch M. Scaled bistatic radar cross section measurements of aircraft with a fiber-coupled THz time-domain spectrometer. IEEE Trans. Terahertz Sci. Tech. 2012;2:424–431.10.1109/TTHZ.2012.2192929
  • Iwaszczuk K, Heiselberg H, Jepsen PU. Terahertz radar cross section measurements. Opt. Express. 2010;18:26399–26408.10.1364/OE.18.026399
  • Zurk LM, Orlowski B, Sundberg G, Winebrenner DP, Thorsos EI, Chen A. Electromagnetic scattering calculations for terahertz sensing. Terahertz and Gigahertz Electronics and Photonics VI. Proceedings of SPIE; San Jose (CA); 2007.
  • Knott EF, Shaeffer JF, Tuley MT. Radar cross section. 2nd ed. Raleigh (NC): SciTech Publishing; 2004.
  • Jin JM. Theory and computation of electromagnetic fields. Hoboken (NJ): Wiley; 2010.10.1002/9780470874257
  • Wang Z, Ye L, Zhang Y, Xu R, Lin W. Investigation of terahertz wave propagation along parallel-plate dielectric waveguide using various metal conductivity models. J. Electromagn. Waves Appl. 2011;25:1231–1242.10.1163/156939311795762015
  • Lucyszyn S. Investigation of wang’s model for room-temperature conduction losses in normal metals at terahertz frequencies. IEEE Trans. Microwave Theory Tech. 2005;53:1398–1403.10.1109/TMTT.2005.845758
  • Hasar UC, Abusoglu A. Using millimeter and terahertz frequencies for complex permittivity retrieval of low-loss materials. J. Electromagn. Waves Appl. 2011;25:2389–2398.10.1163/156939311798806103
  • Hasar UC, Ozbek IY. Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements. J. Electromagn. Waves Appl. 2011;25:2100–2109.10.1163/156939311798072153
  • Lloyd-Hughes J, Jeon T. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared, Millimeter, Terahertz Waves. 2012;33:871–925.10.1007/s10762-012-9905-y
  • Ordal MA, Bell RJ, Alexander RW, Long LL. Optical properties of fourteen metals in the infrared and far infrared Al Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Optics. 1985;24:4493–4499.10.1364/AO.24.004493
  • Schulz LG. The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k. J. Opt. Soc. Am. 1954;44:357–362.10.1364/JOSA.44.000357
  • Schulz LG, Tangherlini FR. The optical constants of silver, gold, copper, and aluminum. II. The index of refraction n. J. Opt. Soc. Am. 1954;44:362–368.10.1364/JOSA.44.000362
  • Yasuda H, Hosako I. Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy. Jpn. J. Appl. Phys. 2008;47:1632–1634.10.1143/JJAP.47.1632
  • Zhou D, Parrott EPJ, Paul DJ, Zeitler JA. Determination of complex refractive index of thin metal films from terahertz time-domain spectroscopy. J. Appl. Phys. 2008;104:053110.10.1063/1.2970161
  • Sun WF, Wang XK, Zhang Y, Zhang CL. Measuring method for refractive index of metal with terahertz time domain reflection spectroscopy. International Symposium on Photoelectronic Detection and Imaging, Proceedings of SPIE; Beijing, China; 2009
  • Jackson JD. Classical electrodynamics. 3rd ed. Hoboken (NJ): Wiley; 1998.
  • Fox M. Optical properties of solids. London: Oxford University Press; 2001.
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York (NY): Wiley; 1983.
  • Wiscombe WJ. Improved mie scattering algorithms. Appl. Opt. 1980;19:1505–1509.
  • Miroslav D, Branislav MN. Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers. IEEE Trans. Antennas Propag. 2004;52:2118–2129.
  • Ordal MA, Bell RJ, Alexander RW, Newquist LA, Querry MR. Optical properties of Al, Fe, Ti, Ta, W and Mo at submillimeter wavelengths. Appl. Opt. 1988;27:1203–1209.10.1364/AO.27.001203
  • Ordal MA, Bell RJ, Alexander RW, Newquist LA, Querry MR. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl. Opt. 1987;26:744–752.10.1364/AO.26.000744
  • Tan P, Fu Q, Li YB, Xiong YQ, Qin B, Yu TQ. Effects of metals mirrors reflectivity and aberrations on THz FEL radiation performance. In: Proceedings of IPAC; Louisiana, NO; 2012. p. 1729–1731
  • Bane KLF, Stupakov G, Tu JJ. Reflectivity measurements for copper and aluminum in the far infrared and the resistive wall impedance in the LCLS undulator. Proceedings of the EPAC; Edinburgh, Scotland; 2006.
  • Rakic AD. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 1995;34:4755–4767.10.1364/AO.34.004755
  • Markovic MI, Rakic AD. Determination of the reflection coefficients of laser light of wavelengths (0.22 μm, 200 μm) from the surface of aluminum using the Lorentz-Drude model. Appl. Opt. 1990;29:3479–3483.10.1364/AO.29.003479
  • Lide DR. Handbook of chemistry & physics. Boca Raton (FL): CRC Press; 2004.
  • Lee KH, Chang KJ. First-principles study of the optical properties and the dielectric response of Al. Phys. Rev. B. 1993;49:2361–2362.
  • Jansen C, Krumbholz N, Geise R, Probst T, Peters O, Enders A Koch M Alignment and illumination issues in scaled THz RCS measurements. Proceedings of IRMMW-THz; Busan, Korea; 2009. p. 1–2.
  • Li HY, Li Q, Xia ZW, Zhao YP, Chen DY, Wang Q. Influence of Gaussian beam on terahertz radar cross section of a conducting sphere. J. Infrared, Millimeter, Terahertz Waves. 2013;34:88–96.10.1007/s10762-012-9950-6
  • Gouesbet G. Scattering of a Gaussian-beam by a sphere using a Bromwich formulation-case of an arbitrary location. Part. Part. Syst. Char. 1988;5:1–8.
  • Mensa DL, Halevy S, Wade G. Coherent Doppler tomography for microwave imaging. Proceedings of the IEEE. 1983;71:254–261.10.1109/PROC.1983.12563

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.