393
Views
3
CrossRef citations to date
0
Altmetric
Invited Review Article

On photon trajectories and electromagnetics near strongly gravitating cosmic sources

Pages 283-330 | Received 15 Oct 2014, Accepted 24 Nov 2014, Published online: 03 Mar 2015

References

  • Michell J. On the means of discovering the distance, magnitude, &c. of the fixed stars. Philos. Trans. R. Soc. London. 1784;74:35–57. Reprinted in: Black holes, selected reprints, Detweiler S, editor. American Association of Physics Teachers, Stony Brook; 1982.10.1098/rstl.1784.0008
  • Laplace PS. Exposition du system du Monde. 1795.
  • Hawking SW, Ellis GFR. The large scale structure of space–time. Cambridge (UK): Cambridge University Press; 1973.10.1017/CBO9780511524646
  • Will CM. Henry Cavendish, Johann von Soldner, and the deflection of light. Am. J. Phys. 1988;56:413–415; Soldner J. Berliner Astron. Jahrb. 161:180410.1119/1.15622
  • Einstein A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes [On the influence of weight of light on its spreading]. Annalen der Physik. 1911;35:898–908.10.1002/(ISSN)1521-3889
  • Prasanna AR. Space and time to spacetime. Hyderabad: Universities Press; 2008.
  • Mossbauer RL. Kernresonanzfluoreszenz von Gammastrahlung in Ir191 [Nuclear resonance fluorescence of gamma radiation in Ir191]. Z. Physik. 1958;151:124–143; Naturwisseschsaften. 1958;45:538–539.
  • Pound RV, Repka GA. Apparent weight of protons. Phys. Rev. Letters. 1960;4:337–341.
  • Dyson FW, Eddington AS, Davidson C. A determination of the deflection of light by the sun’s gravitational field. Philos. Trans. R. Soc. London. 1920;220A:291–333.10.1098/rsta.1920.0009
  • Schneider P, Ehlers J, Falco EE. Gravitational lenses. New York: Springer; 1992.
  • Wambsganss J. Gravitational lensing in astronomy [Internet]. Living Rev. Relativ. 1998;1:12 [cited 2014 Oct]. Available from: http://www.livingreviews.org/Articles/Volume1/1998-12wamb.
  • Perlick V. Gravitational lensing from a spacetime perspective [Internet]. Living Rev. Relativ. 2004:7;9 [cited 2014 Oct]. Available from: http://www.livingreviews.org/lrr-2004-9.
  • Chwolson O. Über eine mögliche Form fiktiver Doppelsterne [On a possible formation of fictitious double stars]. Astr. Nachrichten. 1924;221:329–330.10.1002/(ISSN)1521-3994
  • Einstein A. Lens-like action of a star by the deviation of light in a gravitational field. Science. 1936;84:506–507.
  • Refsdal S. The gravitational lens effect. Mon. Not. Roy. Astr. Soc. 1964;128:295–306.
  • Narayan R, Bartelmann M. Lectures on gravitational lensing. arXive:astro-ph/9606001v2. 1997.
  • Walsh D, Carswell RF, Weymann RJ. 0957 + 561 A, B: Twin quasistellar objects or gravitational lens. Nature. 1979;279:381–383.
  • Paczynski B. Gravitational microlensing at large optical depth. Astrophys. J. 1986;301:503–516.10.1086/163919
  • Alcock C, Allsman RA, Alves DR, Axelrod TS, Becker AS, Bennett DP, Cook KH, Dalal N, Drake AJ, Freeman KC, Geha M, Griest K, Lehner MJ, Marshall SL, Minniti D, Nelson CA, Peterson BA, Popowski P, Pratt MR, Quinn PJ, Stubbs CW, Sutherland W, Tomaney AB, Vandehei T, Welch D. The MACHO project. Astrophys. J. 2000;542:281–307.
  • Greist K. Microlensing and dark matter. Lecture at UCSD; 2005.
  • Frieman JA. Weak lensing and the measurement of q0 from type Ia supernovae. Comments Astrophys. Space Phys. 1997;18:323–333; Wambsganss J, Cen R, Xu G, Ostriker JP. Effects of weak gravitational lensing on the determination of q0. Astrophys J. 1997;475:L81–L84.
  • Carter B. Phys. Rev. 1968;174:1559–1571. In: Dewitt, Dewitt, editor. Black holes, Les Houches lectures; 1973. p. 57.
  • Ruffini R. On the energetics of black holes. Black holes, Les Houches lectures, Dewitt & Dewitt, editors; Gordon and Breach. 1973. p. 451.
  • Hojman R, Hojman S. Spinning charged test particles in a Kerr-Newman background. Phys. Rev. D. 1971;15:2724–2730. Hanson AJ, Regge T. The relativistic spherical top. Ann. Phys (N.Y). 1974;87:498–566.
  • Prasanna AR. General relativistic analysis of charged particle motion in electromagnetic fields surrounding black holes. Riv. Nuovo. Cimento. 1980;3:1–53.
  • Ginzburg VL, Ozernoi IM. General relativistic analysis of charged particle motion in electromagnetic fields surrounding black holes. Sov. Phys. JETP. 1975;20:1–53.
  • Petterson JA. Magnetic field of a current loop around a Schwarzschild blackhole. Phys. Rev. D. 1974;10:3166–3170.
  • Bičák J, Dvořák L. Stationary electromagnetic fields around blackholes. Czech. J. Phys. 1977;B27:127–147.10.1007/BF01587004
  • Chitre DM, Vishveshwara CV. Electromagnetic field of a current loop around a Kerr blackhole. Phys. Rev. D. 1975;12:1538–1543.
  • Petterson JA. Stationary axisymmetric electromagnetic fields around a rotating blackhole. Phys. Rev. D. 1975;12:2218–2225.10.1103/PhysRevD.12.2218
  • King AR, Lasota JP, Kundt W. Blackholes and magnetic fields. Phys. Rev. D. 1975;12:3037–3042.10.1103/PhysRevD.12.3037
  • Wald R. Blackhole in a uniform magnetic field. Phys. Rev. D. 1974;10:1680–1685.10.1103/PhysRevD.10.1680
  • Prasanna AR, Varma RK. Charged particle trajectories in a magnetic field on a curved space time. Pramana J. Phys. 1977;8:229–244.
  • Prasanna AR, Vishveshwara CV. Charged particle motion in an electromagnetic field on Kerr background geometry. Pramana J. Phys. 1978;11:359–377.
  • Prasanna AR, Chakraborty DK. Charged particle orbits in Kerr geometry with electromagnetic fields as viewed from locally nonrotating frames. Pramana J. Phys. 1980;14:113–118.
  • de Felice F. Il Nuovo Cimento B Series 10. 1968;57:351; Wilkins D. Phys. Rev. D. 1972;5:814; Stewart J, Walker M. Black HOLES, the outside story, Springer tracts 69 Astrophysics. 1973.10.1007/BF02710207
  • Denardo G, Ruffini R. Black holes, Les Houches lectures, R 33, 1973. Phys. Lett. B. 1973;45:259.10.1016/0370-2693(73)90198-6
  • Ruffini R, Zerilli F. Black holes, Les Houches lectures. 1973:R 75.
  • Kovar J, Slany P, Stuchlik Z, Karas V, Cremaschini C, Miller J. Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes, arXive: astro-ph HE,1110.4843v1. 2011
  • Bicak J, Stuchlik Z. The fall of the shell of dust onto a rotating blackhole. Mon. Not. R. Astron. Soc. 1976;175:361–396; Znaek R. Onbeing close to a blackhole, without falling in. Nature (London). 1976;262:270–271; Damour T, Hanni RS, Ruffini R, Wilson JR. Regions of magnetic support of a plasma around a blackhole. Phys. Rev. D. 1978;17:1518–1523.10.1093/mnras/175.2.381
  • Newman ET, Penrose R. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 1962;3:566–578.10.1063/1.1724257
  • Teukolsky SA. Rotating blackholes, seperable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 1972;29:1114–1118; Astrophys. J. 1973:185;635.
  • Chandrasekhar S. The Solution of Maxwell’s equations in Kerr geometry. Proc. R. Soc. London. Ser A. 1976;349:1–8.
  • Ernst FJ. New formulation of the axially symmetric gravitational field equations. Phys. Rev. 1968;168:1415–1417; Blackholes in a magnetic universe. J. Math. Phys (NY). 1976;17:54–56; Dadhich NK, Hoenselaers C, Vishveswara CV. Trajectories of charged particles in the static Ernst space time. J. Phys. A Math. Nucl. Gen. 1979:12;215–222.10.1103/PhysRev.168.1415
  • Prasanna AR, Gupta A. Structure of the external electromagnetic field around a slowly rotating compact object and charged particle trajectories therein. Il Nuovo Cimento. 1997;112 B:1089–1106.
  • Hartle JB, Thorne KS. Slowly rotating relativistic stars II, models for neutron stars and supermassive stars. Astrophys. J. 1968;802–837.10.1086/149707
  • Prasanna AR, Dadhich NK. Blackhole electromagnetic fields and negative energy states for charged particles. Il Nuovo Cimento. B. 1982;72:42–50.10.1007/BF02894932
  • Prasanna AR. Negative energy states for charged particles in magnetic fields on Kerr space time. Astron. Astrophys. 1983;126:111–114.
  • Prasanna AR, Sengupta S. Charged particle trajectories in the presence of a toroidal magnetic field on Schwarzschild geometry. Phys. Lett. A. 1994;193:25–30.10.1016/0375-9601(94)00563-X
  • Mathison M. New mechanics of material systems. Acta. Phys. Pol. 1937;6:163–200.
  • Papapetrou A. Spinning test particles in general Relativity I. Proc. R. Soc. London, Ser. A. 1951;209:248–258; Papapetrou A, Corinaldesi E. Spinning test particles in general Relativity II. Proc. R. Soc A. 1951:209;259–268.10.1098/rspa.1951.0200
  • Prasanna AR, Kumar N. Spin precession of a charged particle in a magnetic field including the effects of general relativity. Prog. Theor. Phys. 1973;49:1553–1558.10.1143/PTP.49.1553
  • Prasanna AR, Virbhadra KS. Spinning charged particle in an electromagnetic field on curved space time. Phys. Lett. A. 1989;138:242–246; Virbhadra KS, Prasanna AR, Spin precession of a charged particle in a uniform magnetic field on a static space-time. Pramana – J. Phys. 1989:32;449–454.10.1016/0375-9601(89)90271-5
  • Bargmann V, Michel L, Telegdi VL. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 1959;2:435–436.10.1103/PhysRevLett.2.435
  • Anderson JL. Principles of relativity physics. New York (NY): Academic Press; 1967. p. 249.
  • Christodoulou D, Ruffini R. Reversible transformations of a charged Blackhole. Phys. Rev. D. 1971;4:3552–3555.10.1103/PhysRevD.4.3552
  • Tod KP. Spinning test particles in the field of a blackhole. Il Nuovo Cimento B Series 11. 1976;34:365–379.10.1007/BF02728614
  • Prasanna AR. A new invariant for electromagnetic fields in curved space time. Phys. Lett. A. 1971;37:331–332.10.1016/0375-9601(71)90694-3
  • Prasanna AR. Electromagnetism and gravitation. Lett. Nuovo Cim. 1973;6:420–423.10.1007/BF02745013
  • Daniels RD, Shore GM. Faster than light photons and charged blackholes. Nucl. Phys. B. 1994;425:634–650.
  • Mohanty S, Prasanna AR. Photon propagation in Einstein and higher derivative gravity. Nucl. Phys. B. 1998;526:501–508.10.1016/S0550-3213(98)00275-2
  • Drummond IT, Hathrell SJ. QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D. 1980;22:343.10.1103/PhysRevD.22.343
  • Prasanna AR, Mohanty S. Constraints on non minimally coupled curved space electrodynamics from astrophysical observations. Class. Quantum Grav. 2003;20:3023–3028.10.1088/0264-9381/20/14/304
  • Lambiase G, Prasanna AR. Gauge invariant wave equation in curved space time and primordial magnetic fields. Phys. Rev. D. 2004;70:063502.
  • Turner MS, Widrow LM. Inflation produced large scale magnetic fields. Phys. Rev. D. 1988;37:2743–2755.10.1103/PhysRevD.37.2743

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.