464
Views
19
CrossRef citations to date
0
Altmetric
Invited Review Article

Review on an arc-induced long-period fiber grating and its sensor applications

, , &
Pages 703-726 | Received 21 Jan 2015, Accepted 13 Feb 2015, Published online: 25 Mar 2015

References

  • Vengsarkar AM, Lemaire PJ, Judkins JB, Bhatia V, Erdogan T, Sipe JE. Long-period fiber gratings as band-rejection filters. J. Lightwave Tech. 1996;14:58–65.10.1109/50.476137
  • Poole CD, Meester JP, Presby HM. Two-mode fibre spatial-mode converter using periodic core deformation. Electron. Lett. 1994;30:1437–1438.10.1049/el:19940948
  • Hwang IK, Yun SH, Kim BY. Long-period fiber gratings based on periodic microbends. Opt. Lett. 1999;24:1263–1265.10.1364/OL.24.001263
  • Bock WJ, Chen J, Mikulic P, Eftimov T. A novel fiber-optic tapered long-period grating sensor for pressure monitoring. IEEE Trans. Instrum. Meas. 2007;56:1176–1180.10.1109/TIM.2007.899904
  • Iadicicco A, Campopiano S, Cutolo A, Pawlowski MLK, Bock WJ, Cusano A. Refractive index sensitivity in thinned UV and arc induced long-period gratings: a comparative study. Int. J. Smart Sens. 2008;1:354–369.
  • Iadicicco A, Campopiano S, Cusano A. Long-period gratings in hollow core fibers by pressure-assisted arc discharge technique. IEEE Photon. Technol. Lett. 2011;23:1567–1569.10.1109/LPT.2011.2164518
  • Martinez-Rios A, Monzon-Hernandez D, Torres-Gomez I. Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing. Opt. Commun. 2010;283:958–962.10.1016/j.optcom.2009.10.108
  • Martinez-Rios A, Torres-Gomez I, Monzon-Hernandez D, Salceda-Delgado G, Duran-Ramirez VM, Anzueto-Sanchez G. Random period arc-induced long-period fiber gratings. Opt. Laser Technol. 2012;44:1176–1179.10.1016/j.optlastec.2011.11.037
  • Sevigny B, Leduc M, Faucher M, Godbout N, Lacroix S. Characterization of the large index modification caused by electrical discharge in optical fibers. In: Lasers and Electro-Optics. Conference on Quantum Electronics and Laser Science; 2009 June 2–4; Baltimore, MD, USA.
  • Chung C, Lee HJ. Wavelength characteristics of arc-induced long-period fiber grating by core and cladding diameter modulation. In: Lasers and Electro-Optics Society (LEOS). IEEE 14th Annual Meeting; 2001 Nov 12–13; San Diego, CA, USA.
  • Abrishamian F, Dragomir N, Morishita K. Refractive index profile changes caused by arc discharge in long-period fiber gratings fabricated by a point-by-point method. Appl. Opt. 2012;51:8271–8276.10.1364/AO.51.008271
  • Durr F, Rego G, Marques PVS, Semjonov SL, Dianov EM, Limberger HG, Salathe RP. Tomographic stress profiling of arc-induced long-period fiber gratings. J. Lightwave Tech. 2005;23:3947–3953.10.1109/JLT.2005.857763
  • Anzueto-Sánchez G, Martínez-Rios A, Castrellon-Uribe J. Tuning and wavelength switching erbium-doped fiber ring lasers by controlled bending in arc-induced long-period fiber gratings. Opt. Fiber Technol. 2012;18:513–517.10.1016/j.yofte.2012.08.004
  • Humbert G, Malki A. Annealing time dependence at very high temperature of electric arc-induced long-period fibre gratings. Electron. Lett. 2002;38:449–450.10.1049/el:20020326
  • Humbert G, Malki A. Characterizations at very high temperature of electric arc-induced long-period fiber gratings. Opt. Commun. 2002;208:329–335.10.1016/S0030-4018(02)01632-2
  • Humbert G, Malki A. High performance bandpass filters based on electric arc-induced π-shifted long-period fibre gratings. Electron. Lett. 2003;39:1506–1507.10.1049/el:20030971
  • Humbert G, Malki A, Février S, Roy P, Pagnoux D. Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres. Electron. Lett. 2003;39:349–350.10.1049/el:20030271
  • Humbert G, Malki A, Février S, Roy P, Auguste JL, Blondy JM. Long period grating filters fabricated with electric arc in dual concentric core fibers. Opt. Commun. 2003;225:47–53.10.1016/j.optcom.2003.07.007
  • Humbert G, Malki A, Prioleau C, Ketata M. Fabrication of long period fiber grating using electric discharge in non-hydrogenated fiber. In: Proceedings of SPIE, Photonics 2000: International Conference on Fiber Optics and Photonics; 2001 Sep 25; S. Das, Calcutta, India.
  • Yin GL, Wang YP, Liao CR, Zhou JT, Zhong XY, Liu S, Wang Q, Li ZY, Sun B, He J, Wang GJ. Improved arc discharge technique for inscribing compact long period fiber gratings. In: Proceedings of SPIE. International Conference on Optical Fibre Sensors; Santander, Spain.
  • Rego G. Annealing of arc-induced gratings at high temperatures. Electron. Lett. 2009;45:972–974.10.1049/el.2009.1767
  • Rego G. Arc-induced long-period fibre gratings: fabrication and their applications in optical communications and sensing [dissertation]. Portugal: University of Porto; 2006.
  • Rego G, Okhotnikov O, Dianov E, Sulimov V. High-temperature stability of long-period fiber gratings produced using an electric arc. J. Lightwave Tech. 2001;19:1574–1579.10.1109/50.956145
  • Rego G, Durr F, Marques PVS, Limberger HG. Strong asymmetric stresses arc-induced in pre-annealed nitrogen-doped fibres. Electron. Lett. 2006;42:1–2.
  • Rego G, Santos JL, Salgado HM. Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres. Opt. Commun. 2006;259:598–602.10.1016/j.optcom.2005.09.030
  • Rego G, Ivanov OV, Marques PVS. Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings. Opt. Exp. 2006;14:9594–9599.10.1364/OE.14.009594
  • Rego G, Santos LMNBF, Schroder B, Marques PVS, Santos JL, Salgado HM. In situ temperature measurement of an optical fiber submitted to electric arc discharges. IEEE Photon. Technol. Lett. 2004;16:2111–2113.
  • Rego G, Caldas P, Ivanov O, Santos JL. Investigation of the long-term stability of arc-induced gratings heat treated at high temperatures. Opt. Commun. 2011;284:169–171.10.1016/j.optcom.2010.08.043
  • Rego G, Marques PVS, Salgado HM, Santos JL. Simultaneous measurement of temperature and strain based on arc-induced long-period fibre gratings. Electron. Lett. 2005;41.
  • Rego G, Falate R, Kalinowski HJ, Fabris JL, Marques PVS, Salgado HM, Santos JL. Simultaneous temperature and strain measurement based on arc-induced long-period fiber gratings. In: 17th International Conference on Optical Fibre Sensors; 2005 Aug; Bellingham, WA, USA.
  • Rego G, Falate R, Fabris L, Santos JL, Salgado HM, Fabris JL, Semjonov SL, Dianov EM. Arc-induced long-period gratings in aluminosilicate glass fibers. Opt. Lett. 2005;30:2065–2067.
  • Rego G, Romero R, Frazão O, Marques PVS, Salgado HM. Apodisation of uniform fibre Bragg grating using electric arc discharges. In: Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components; 2002 Jun 5–6; Glasgow, UK.
  • Statkiewicz-Barabach G, Anuszkiewicz A, Urbanczyk W, Wojcik J. Sensing characteristics of rocking filter fabricated in microstructured birefringent fiber using fusion arc splicer. Opt. Exp. 2008;16:17249–17259.10.1364/OE.16.017249
  • Dobb H, Kalli K, Webb DJ. Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre. Opt. Commun. 2006;260:184–191.10.1016/j.optcom.2005.10.022
  • Ayala JME, Chavez RIM, Garcia JCH, Laguna RR. Long period fiber grating produced by arc discharges. In: Yasin M, Harun SW, Arof H, editors, Fiber optic sensors. Rijeka: InTech; 2012. p. 295–316.
  • Petrovic JS, Dobb H, Mezentsev VK, Kalli K, Webb DJ, Bennion I. Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index. J. Lightwave Tech. 2007;25:1306–1312.10.1109/JLT.2007.893912
  • Benoune M, Guizani S, Au J, Bouslimani Y, Hamam H, Latry O, Ketata K. LPFG implementation using electric-arc and micro-deformations. In: Industrial Technology. 2004 IEEE International Conference on Industry Technology (ICIT); 2004 Dec 8–10; Hammamet, Tunisia.
  • Myśliwiec M, Grochowski J, Krogulski K, Mikulic P, Bock WJ, Śmietana M. Effect of wet etching of arc-induced long-period gratings on their refractive index sensitivity. Acta Phys. Polonica A. 2013;124:521–524.10.12693/APhysPolA.124.521
  • Smietana M, Debowska AK, Mikulic P, Bock WJ. Refractive index sensing with high temperature nano-coated electric arc-induced long-period gratings working at dispersion turning point. In: Proceedings of 18th Microoptics Conference (MOC’13); 2013 Oct 27–30; Tokyo, Japan.
  • Smietana M, Bock WJ, Mikulic P. Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation. Meas. Sci. Technol. 2010;21:1–8.
  • Smietana M, Bock WJ, Mikulic P, Chen J. Increasing sensitivity of arc-induced long-period gratings – pushing the fabrication technique toward its limits. Meas. Sci. Technol. 2011;22:1–6.
  • Zulkifly MZRM, Rahman FA, Wong HY. Arc-induced long period fiber gratings (LPFG) characterization: comparison between cladding etched and non-etched LPFG. In: Photonics (ICP), 2010 International Conference on. IEEE; 2010 July 5–7; Langkawi, Malaysia.
  • Kim MW, Lee DW, Hong B, Chung HY. Performance characteristics of long-period fiber-gratings made from periodic tapers induced by electric-arc discharge. J. Korean Phys. Soc. 2002;40:369–373.
  • Godbout N, Daxhelet X, Maurier A, Lacroix S. Long-period fiber grating by electrical discharge. In: 24th European Conference on Optical Communication (ECOC); 1998 Sep 20–24; Madrid, Spain.
  • Ivanov OV, Rego G. Origin of coupling to antisymmetric modes in arc-induced long-period fiber gratings. Opt. Exp. 2007;15:13936–13941.10.1364/OE.15.013936
  • Caldas P, Rego G, Ivanov OV, Santos JL. Characterization of the response of a dual resonance of an arc-induced long-period grating to various physical parameters. Appl. Opt. 2010;49:2994–2999.10.1364/AO.49.002994
  • Palai P, Satyanarayan MN, Das M, Thyagarajan K, Pal BP. Characterization and simulation of long period gratings fabricated using electric discharge. Opt. Commun. 2001;193:181–185.10.1016/S0030-4018(01)01231-7
  • In SH, Chung C, Lee HJ. The resonance wavelength-tuning characteristic of the arc-induced LPFGs by diameter modulation. In: Optical Fiber Sensors Conference Technical Digest; 2002 May 10; Portland, OR, USA.
  • Kim S, Kim GH, Hwang KJ, Lim SD, Lee K, Kim SH, Lee SB. Investigation of an arc-induced long period fiber grating inscribed in a photonic crystal fiber with two large air holes. J. Opt. Soc. Korea. 2009;13:428–433.10.3807/JOSK.2009.13.4.428
  • Iredale TB, Steinvurzel P, Eggleton BJ. Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre. Electron. Lett. 2006;42:739–740.
  • Feng T, Jenkins MH, Yan FP, Gaylord TK. Arc fusion splicing effects in large-mode-area single-mode ytterbium-doped fibers. Appl. Opt. 2013;52:7706–7711.10.1364/AO.52.007706
  • Geng T, Zi DD, Yang WL, Tong CG. The LPFG temperature characteristic research based on electric heating method. In: 2013 International Conference on Optoelectronics and Microelectronics (ICOM); 2013 Sep 7–9; Harbin, China.
  • Zheng ZZ, Li CM, Lee CL, Horng JS. Arc-induced long period fiber gratings based on flat-clad fibers. In: Progress in Electromagnetics Research Symposium Proceeding; 2013 March 25–28; Taipei.
  • Kim BH, Park Y, Ahn TJ, Kim DY, Lee BH, Chung Y, Paek UC, Han WT. Residual stress relaxation in the core of optical fiber by CO2 laser irradiation. Opt. Lett. 2001;26:1657–1659.10.1364/OL.26.001657
  • Davis DD, Gaylord TK, Glytsis EN, Mettler SC. CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarisation independence. Electron. Lett. 1998;34:416–1417.
  • Davis DD, Gaylord TK, Glytsis EN, Mettler SC. Very-high-temperature stable CO2-laser induced long-period fibre gratings. Electron. Lett. 1999;35:740–742.10.1049/el:19990483
  • Davis DD, Gaylord TK, Glytsis EN, Kosinski SG, Mettler SC, Vengsarkar AM. Long-period fibre grating fabrication with focused CO2 laser pulses. Electron. Lett. 1998;34:302–303.10.1049/el:19980239
  • Lu PH, Hsu KC, Jyu SS, Lai YC. Periodically tapered long-period fiber gratings by CO2 laser heating and tension stretching. In: 15th Optoelectronics and Communications Conference (OECC 2010); 2010 July 5–9; Sapporo.
  • Lan XW, Han Q, Wei T, Huang J, Xiao H. Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations. IEEE Photon. Technol. Lett. 2011;23:1664–1666.
  • Rao YJ, Wang YP, Ran ZL, Zhu T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightwave Tech. 2003;21:1320–1327.
  • Liu Y, Chiang KS. Recent development on CO2-laser written long-period fiber gratings. Asia-Pacific Optical Communications (APOC 2008). Proc. SPIE. 2008;7134:713437.
  • Wang YP, Liao CR, Zhong XY, Zhou JT, Liu YJ, Li ZY, Wang GJ, Yang KM. Long period fiber gratings written in photonic crystal fibers by use of CO2 laser. Photon. Sensors. 2013;3:193–201.10.1007/s13320-013-0120-9
  • Narayanan C, Presby HM, Vengsarkar AM. Band-rejection fibre filter using periodic core deformation. Electron. Lett. 1997;33:280–281.10.1049/el:19970227
  • Dianov EM, Karpov VI, Grekov MV, Golant KM, Vasiliev SA, Medvedkov OI, Khrapko RR. Thermo-induced long-period fibre gratings. In: 23rd European Conference on Optical Communication (ECOC ‘97); 1997 Sep 22–25; Edinburgh.
  • Kosinski G, Hill SM, Vengsarkar AM, Eyck T, Alexander C. Methods for making long-period fiber gratings. European Patent Specification; 2010.
  • Jin W, Xuan HF, Jin W, Jin L. Rocking long period gratings in single mode fibers. J. Lightwave Tech. 2013;31:3117–3122.10.1109/JLT.2013.2279036
  • Liu YQ. Long-period gratings written in the microstructure specialty fibers. In: 2013 IEEE 6th Conference on Advanced Infocomm Technology (ICAIT); 2013 Jul 6–9; Hsinchu.
  • Ugale S, Mishra V. Optimization of reversible LPFG for sensing application. Optik. 2014;125:111–114.10.1016/j.ijleo.2013.06.056
  • Ugale S, Mishra V. Pressure sensor based on mechanically induced LPFG in novel MSM fiber structure. Opt. Photon. J. 2013;3:225–228.10.4236/opj.2013.33036
  • Ivanov OV. Wavelength shift and split of cladding mode resonances in microbend long-period fiber gratings under torsion. Opt. Commun. 2014;232:159–166.
  • Sevilla GAC, Hernandez DM, Gomez IT, Rios AM. Mechanically induced long-period fiber gratings on tapered fibers. Opt. Commun. 2009;282:2823–2826.
  • Wang DY, Wang Y, Gong J, Wang A. Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating. IEEE Photon. Technol. Lett. 2011;23:733–735.10.1109/LPT.2011.2131644
  • Wang DY, Wang Y, Han M, Gong J. Fully distributed fiber-optic biological sensing. IEEE Photon. Technol. Lett. 2010;22:1553–1555.10.1109/LPT.2010.2069089
  • Veeriah S, Faidz AR, Mishra V. Spectral shaping of acousto-optic tunable filter: a method to tune the bandwidth, wavelength and attenuation. Microw. Opt. Technol. Lett. 2006;48:1781–1785.
  • Martinez A, Dubov M, Khrushchev I, Bennion I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 2004;40:1170–1172.10.1049/el:20046050
  • Fu LB, Marshall GD, Bolger JA, Steinvurzel P, Mägi EC, Withford MJ, Eggleton BJ. Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres. Electron. Lett. 2005;41:638–640.10.1049/el:20051083
  • Mihailov SJ, Grobnic D, Huimin Ding D, Smelser CW, Jes Broeng B. Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers. IEEE Photon. Technol. Lett. 2006;18:1837–1839.10.1109/LPT.2006.881211
  • Kondo Y, Nouchi K, Mitsuyu T, Watanabe M, Kazansky PG, Hirao K. Fabrication of long period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett. 1999;24:646–648.10.1364/OL.24.000646
  • Fujimaki M, Ohki Y, Brebner JL, Roorda S. Fabrication of long-period optical fiber gratings by use of ion implantation. Opt. Lett. 2000;25:88–89.10.1364/OL.25.000088
  • von Bibra ML, Roberts A, Canning J. Fabrication of long-period fiber gratings by use of focused ion-beam irradiation. Opt. Lett. 2001;26:765–767.10.1364/OL.26.000765
  • Akiyama M, Nishide K, Shima K, Wada A, Yamauchi R. A novel long-period fiber grating using periodically released residual stress of pure-silica core fiber. In: Optical Fiber Communications Conference and Exhibit; 1998 Feb 22–27; San Jose, CA, USA.
  • Mountfort FH. A path integral approach to the coupled-mode equations with specific reference to optical waveguides [dissertation]. Department of Science, University of Stellenbosch; 2009.
  • Erdogan T. Fiber grating spectra. J. Lightwave Tech. 1997;15:1277–1294.10.1109/50.618322
  • Kaminow IP, Li T, editors. Optical fiber telecommunications IV-A: components. Waltham, MA: Academic Press; 2002. p. 1–876.
  • James SW, Tatam RP. Optical fibre long-period grating sensors: characteristics and application. Meas. Sci. Technol. 2003;14:R49–R61.10.1088/0957-0233/14/5/201
  • Lazaro JM, Quintela A, Allende PBG, Mirapeix J, Galindez C, Higuera JML. High temperature fiber sensor based on a thermo-mechanical written. In: Proceedings of SPIE 7503, 20th International Conference in Optical Fibre Sensors; 2009 Oct; Edinburgh, UK.
  • Kashyap R. Fiber Bragg gratings. Optics and photonics. San Diego, CA: Academic Press; 1999.
  • Erdogan T. Cladding-mode resonances in short- and long- period fiber grating filters. J. Opt. Soc. Am. A. 1997;14:1760–1773.
  • Gouveia CAJ, Baptista JM, Jorge PAS. Current developments in optical fiber technology. In: Harun SW, Arof H, editors. Chapter 13, Refractometric optical fiber platforms for label free sensing. Rijeka: InTech; 2013. p. 345–372.
  • Dianov EM, Kurkov AS, Medvedkov OI, Vasiliev SA. Photoinduced long-period fiber grating as a promising sensor element. In: Proceeding of 10th European Conf. Solid State Transducers (Eurosensors ‘96); 1996 Sep 8–11; Leuven, Belgium.
  • Bhatia V. Applications of long-period gratings to single and multi-parameter sensing. Opt. Exp. 1999;4:457–466.10.1364/OE.4.000457
  • Yin ZH, Zhang XB, Liu YQ, Pang FF, Wang TY. Refractive index sensitivity characteristics of fiber taper long-period grating. In: Asia Communications and Photonics Conference (ACP 2012); 2012 Nov 7–10; Guangzhou, China.
  • Ding JF, Zhang AP, Shao LY, Yan JH, He S. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett. 2005;17:1247–1249.
  • Allsop T, Webb DJ, Bennion I. A comparison of the sensing characteristics of long period gratings written in three different types of fiber. Opt. Fiber Technol. 2003;9:210–223.10.1016/S1068-5200(03)00028-2
  • Silva C, Coelho JMP, Caldas P, Jorge P. Fibre sensing system based on long-period gratings for monitoring aqueous environments. Fiber Opt. Sens. 2012;318–342.
  • Villar ID, Matias IR, Arregui FJ. Long-period fiber gratings with overlay of variable refractive index. IEEE Photon. Technol. Lett. 2005;17:1893–1895.
  • Stegall DB, Erdogan T. Leaky cladding mode propagation in long-period fiber grating devices. IEEE Photon. Technol. Lett. 1999;11:343–345.
  • Akki JF, Lalasangi AS, Raikar PU, Srinivas T, Laxmeshwar LS, Raikar US. Core-cladding mode resonances of long period fiber grating in concentration sensor. IOSR J. Appl. Phys. 2013;4:41–46.
  • Inada K, Watanabe O, Taya H. Splicing of fibers by the fusion method. IEEE J. Select. Areas Commun. 1986;4:706–713.10.1109/JSAC.1986.1146381
  • Lee SC, Yong YT, Yeap KH, Rahman FA. An asymmetric tapered long period fiber grating: fabrication and characterization. In: Photonics (ICP). 2013 IEEE 4th International Conference on Photonics (ICP); 2013 Oct 28–30; Melaka, Malaysia.
  • Humbert G, Malki A. Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations. J. Opt. A: Pure Appl. Opt. 2002;4:194–198.10.1088/1464-4258/4/2/313
  • Enomoto T, Shigehara M, Ishikawa S, Danzuka T, Kanamori H. Long-period fiber grating in a pure-silica-core fiber written by residual stress relaxation. In: Optical Fiber Communication Conference and Exhibit. Proceeding of Optical Fiber Communication Conference (OFC ‘98); 1998 Feb 22–27; San Jose, CA, USA.
  • Kosinski SG, Vengsarkar AM. Splicer-based long-period fiber gratings. In: Optical Fiber Communication Conference and Exhibit. Proceeding of Optical Fiber Communication Conference (OFC ‘98); 1998 Feb 22–27; San Jose, CA.
  • Mata-Chávez RI, Martinez-Rios A, Torres-Gomez I, Alvarez-Chavez JA, Selvas-Aguilar R, Estudillo-Ayala J. Wavelength band-rejection filters based on optical fiber fattening by fusion splicing. Opt. Laser Technol. 2008;40:671–675.10.1016/j.optlastec.2007.08.010
  • Yin GL, Wang YP, Liao CR, Zhou JT, Zhong XY, Wang GJ, Sun Bing. Long period fiber gratings inscribed by periodically tapering a fiber. IEEE Photon. Technol. Lett. 2014;26:698–701.10.1109/LPT.2014.2302901
  • Gu ZT, Lan JL, Chen HY. Characteristics and design of coated LPFG sensor based on mode transition. In: 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2013); 2013 Aug 19–22; Vancouver, BC.
  • Wang Z, Heflin JR, Stolen RH, Ramachandran S. Analysis of optical response of long period fiber gratings to nm-thick thin-film coating. Opt. Exp. 2005;13:2808–2813.10.1364/OPEX.13.002808
  • Kos A, Chen JH, Bock WJ, Mikulic P. Tapered long-period grating (TLPG) with teflon af coating for pressure sensing applications. In: Electrical and Computer Engineering. Canadian Conference on Electrical and Computer Engineering (CCECE ‘08); 2008 May 4–7; Niagara Falss, ON.
  • Smietana M, Bock WJ, Mikulic P, Chen JH. Pressure sensing in high-refractive-index liquids using long-period gratings nanocoated with silicon nitride. Sensors. 2010;10:11301–11310.10.3390/s101211301
  • Wang ZY, Heflin JR, Stolen RH, Ramachandran S. Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayer. Appl. Phys. Lett. 2005;86:223104-1–223104-3.
  • Wang ZY. Ionic self-assembled multilayers adsorbed on long period fiber gratings for used as biosensors [dissertation]. Virginia (VA): Faculty of Virginia Polytechnic Institute and State University; 2005.
  • Tang JL, Wang JN. Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles. Sensors. 2008;8:171–184.10.3390/s8010171
  • Korposh S, James SW, Lee SW, Topliss S, Cheung SC, Batty WJ, Tatam RP. Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles. Opt. Exp. 2010;18:13227–13228.10.1364/OE.18.013227
  • Rees ND, James SW, Tatam RP. Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays. Opt. Lett. 2002;27:686–688.10.1364/OL.27.000686
  • Rego G.A review of refractometric sensors based on long period fibre gratings. Sci. World J. 2013;2013:1–14.
  • Villar ID, Matias IR, Arregui FJ. Optimization of sensitivity in long period gratings with overlay deposition. Opt. Exp. 2005;13:57–69.
  • Caucheteur C, Chah K, Lhomme F, Debliquy M, Lahem D, Blondel M, Megret P. Enhancement of cladding modes coupling in tilted Bragg gratings owing to cladding etching. In: Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components; 2005 June 22–24; Mondello.
  • Frazao O, Falate R, Baptista JM, Fabris JL, Santos JL. Optical bend sensors based on a long-period fiber grating monitored by an optical time-domain reflectometer. Opt. Eng. Lett. 2005;44:1–3.
  • Zhang JR, Liu HR, Wu XK. Curvature optical fiber sensor by using bend enhanced method. Front. Optoelectron. China. 2009;2:204–209.10.1007/s12200-009-0032-x
  • Yong YT, Lee SC, Rahman FA. Sensitization of hybrid LPFG-FBG refractometer using double-pass configuration. Opt. Commun. 2015;338:590–595.10.1016/j.optcom.2014.11.054
  • Loh MC, Rahman FA, Kuramitz H, Yong YT. Method to sensitize an arc-induced LPFG-based sensor using double-pass configuration. Microw. Opt. Technol. Lett. 2014;56:2766–2769.10.1002/mop.v56.12
  • Heflin JR, Figura C, Marciu D, Liu Y, Claus RO. Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers. Appl. Phys. Lett. 1999;74:495–497.10.1063/1.123166
  • Li QS, Zhang XL, Yu YS, Qian Y, Dong WF, Li Y, Shi JG, Yan JY, Wang HY. Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers. React. Funct. Polym. 2011;71:335–339.10.1016/j.reactfunctpolym.2010.11.012
  • Wang ZY, Heflin JR, Stolen RH, Ramachandran S. Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers. Appl. Phys. Lett. 2005;86:223104.10.1063/1.1940735
  • Wang T, Korposh S, James S, Tatam R, Lee SW. Polyelectrolyte multilayer nanothin film coated long period grating fiber optic sensors for ammonia gas sensing. In: Proceedings of the 13th IEEE International Conference on Nanotechnology; 2013 Aug 5–8; Beijing, China.
  • Yang RZ, Dong WF, Meng X, Zhang XL, Sun YL, Hao YW, Guo JC, Zhang WY, Yu YS, Song JF, Qi ZM, Sun HB. Nanoporous TiO2/Polyion thin-film coated long-period grating sensors for the direct measurement of low-molecular weight analytes. Amer. Chem. Soc. 2012;28:8814–8821.
  • Chiang KS, Liu YQ, Ng MN, Dong XY. Analysis of etched long-period fibre grating and its response to external refractive index. Electron. Lett. 2000;36:966–967.10.1049/el:20000701
  • Chan KP, Tan CS, Teng WS, Rahman FA, Soon SC. Feasibility study of long period grating as an optical biosensor for dengue virus detection – an alternative approach to dengue virus screening. Paper presented at: IEEE EMBS Conference on Biomedical Engineering & Sciences (IECBES 2010); 2010 Nov 30–Dec 2; Kuala Lumpur, Malaysia.
  • Linesh J, Libish TM, Bobby MC, Radhakrishnan P, Nampoori VPN. Periodically tapered LPFG for ethanol concentration detection in ethanol-gasoline blend. Sens. Transd. J. 2011;125:205–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.