154
Views
7
CrossRef citations to date
0
Altmetric
Articles

Fast iterative solvers for numerical simulations of scattering and radiation on thin wires

, , , &
Pages 1281-1296 | Received 02 Jan 2015, Accepted 10 Apr 2015, Published online: 18 May 2015

References

  • Hallen E. Exact treatment of antenna current wave reflection at the end of tube shaped cylindrical antennas. IRE Trans. Antennas Propag. 1956;4:479–495.
  • Hallen E. Theoretical investigations into the transmitting and receiving qualities of antennae. Nova Acta Regiae Soc. Sci. Upsaliensis Ser. IV. 1938;11:1–44.
  • Wu TT. Theory of the dipole antenna and the two-wire transmission line. J. Math. Phys. 1961;2:550–574.
  • Elliot RS. Antenna theory and design. 3rd ed. New Jersey (NJ): Prentice-Hall; 1981.
  • Poljak D, Roje V. Finite element technique for solving time-domain Hallen integral equation. In: 10th International Conference on Antennas and Propagation (IEEE); Vol. 1; 1997 April 14--17. Edinburgh (UK); 1997; p. 225–228.
  • Davies PJ, Duncan DB, Funkenz SA. Accurate and efficient algorithms for frequency domain scattering from a thin wire. J. Comput. Phys. 2001;168:155–183.
  • Fikioris G. The approximate integral equation for a cylindrical scatterer has no solution. J. Electromagn. Waves Appl. 2001;15:1153–1159.
  • Sarkar TK. A study of the various methods for computing electromagnetic field utilizing thin wire integral equations. Radio Sci. 1983;18:29–38.
  • Neff NP, Siller CA, Tillman JD. A trigonometric approximation to the current in the solution of Hallén’s equation. IEEE Trans. Antennas Propagat. 1969;17:805–806.
  • Marasini C. Efficient computation techniques for Galerkin MoM antenna design [PhD dissertation]. Eindhoven (NL): Technische Universiteit Eindhoven; 2008.
  • Feng KA, Cai JD, Pu FC. Fredholm integral equation of the second kind in antenna theory. Acta Phys. Sin. 1978;27:187–202.
  • Rynne BP. Convergence of Galerkin method solutions of the integral equation for thin wire antennas. Adv. Comp. Math. 2000;12:251–259.
  • Rynne BP. On the well-posedness of Pocklington’s equation for a straight wire antenna and convergence of numerical solutions. J. Electromagn. Waves Appl. 2000;14:1489–1503.
  • Rynne BP. The well-posedness of the integral equations for thin wire antennas. IMA J. Appl. Math. 1992;49:35–44.
  • Fikioris G, Wu TT. On the application of numerical methods to Hallén’s equation. IEEE Trans. Antennas Propag. 2001;49:383–392.
  • Fikioris G, Lionas J, Lioutas CG. The use of the frill generator in thin-wire integral equations. IEEE Trans. Antennas Propagat. 2003;51:1847–1854.
  • Gray MC. A modification of Hallén’s solution of the antenna problem. J. Appl. Phys. 1944;15:61–65.
  • Miano G, Verolino L, Vaccaro VG. A new method of solution of Hallén’s problem. J. Math. Phys. 1995;36:4087–4099.
  • Lund J, Bowers K. Sinc methods for quadrature and differential equations. Philadelphia (PA): SIAM; 1992.
  • Saadatmandi A, Razzaghi M, Dehghan M. Sinc-collocation methods for the solution of Hallen’s integral equation. J. Electromagn. Waves Appl. 2005;19:245–256.
  • Bruno OP, Haslam MC. Regularity theory and superalgebraic solvers for wire antenna problems. SIAM J. Sci. Comput. 2007;29:1375–1402.
  • Shamsi M, Razzaghi M. Solution of Hallen’s integral equation using multiwavelets. Comput. Phys. Commun. 2005;168:187–197.
  • Gibson WC. The method of moments in electromagnetics. Boca Raton (FL): Chapman & Hall/CRC, Taylor & Francis Group; 2008.
  • Bancroft R. Understanding electromagnetic scattering using the moment method: a practical approach. Norwood (UK): Artech House; 1996.
  • Tijhuis AG, Peng ZQ, Bretones AR. Transient excitation of a straight thin-wire segment: a new look at an old problem. IEEE Trans. Antennas Propagat. 1992;40:1132–1146.
  • Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986;7:856–869.
  • van der Vorst HA. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1992;13:631–644.
  • Jing YF, Huang TZ, Zhang Y, Li L, Cheng GH, Ren ZG, Duan Y, Sogabe T, Carpentieri B. Lanczos-type variants of the COCR method for complex nonsymmetric linear systems. J. Comput. Phys. 2009;228:6376–6394.
  • Davis PJ. Circulant matrices. 2nd ed. Providence (RI): AMS Chelsea; 1994.
  • Gray RM. Toeplitz and circulant matrices: a review. Found. Trends Commun. 2006;2:155–239.
  • Gu XM, Huang TZ, Zhao XL, Xu WR, Li HB, Li L. Circulant preconditioned iterative methods for peridynamic model simulation. Appl. Math. Comput. 2014;248:470–479.
  • Potts D, Steidl G. Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems. Linear Algebra Appl. 1998;281:265–292.
  • Jin XQ. Preconditioning techniques for Toeplitz systems. Beijing (CN): Higher Education Press; 2010.
  • Carpentieri B, Jing YF, Huang TZ. The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 2011;33:3020–3036.
  • Bondeson A, Rylander T, Ingelström P. Computational electromagnetics. New York (NY): Springer; 2005.
  • Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Vol. 55, Applied mathematics series. Maryland (MY): National Bureau of Standards; 1965.
  • Chan RH, Jin XQ. An Introduction to iterative Toeplitz solvers. Philadelphia (PA): SIAM; 2007.
  • Bini D, Favati P. On a matrix algebra related to the discrete Hartley transform. SIAM J. Matrix Anal. Appl. 1993;14:500–507.
  • Chan RH. Circulant preconditioners for Hermitian Toeplitz systems. SIAM J. Matrix Anal. Appl. 1989;10:542–550.
  • Chan RH, Ng MK. Conjugate gradient methods for Toeplitz systems. SIAM Rev. 1996;38:766–771.
  • Chan TF. An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 1988;9:766–771.
  • Chan RH. The spectrum of a family of circulant preconditioned Toeplitz systems. SIAM J. Numer. Anal. 1989;26:503–506.
  • Jing YF, Carpentieri B, Huang TZ. Experiments with Lanczos biconjugate A-orthonormalization methods for MoM discretizations of Maxwell’s equations. Prog. Electromagn. Res. (PIER). 2009;99:427–451.
  • Carpentieri B, Jing YF, Huang TZ, Pi WC, Sheng XQ. A novel family of iterative solvers for method of moments discretizations of Maxwell’s equations. In: Gürel Levent, editor. Computational Electromagnetics International Workshop (CEM); 2011 Aug 10–13. \‘{I}zmirs (TR): Bilkent University; 2011. p. 85–90.
  • Carpentieri B, Jing YF, Huang TZ, Pi WC, Sheng XQ. Combining the CORS and BiCORSTAB iterative methods with MLFMA and SAI preconditioning for solving large linear systems in electromagnetics. Appl. Comput. Electromagn. Soc. (ACES) J. 2012;27:102–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.