7,267
Views
55
CrossRef citations to date
0
Altmetric
Invited Review Article

The Sommerfeld half-space problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes

&
Pages 1-42 | Received 26 Aug 2015, Accepted 07 Sep 2015, Published online: 03 Dec 2015

References

  • Sommerfeld A. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie [On the propagation of waves in wireless telegraphy]. Ann. Phys. 1909;28:665–736.
  • Sommerfeld A. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie [On the propagation of waves in wireless telegraphy]. Ann. Phys. 1926;81:1135–1153.
  • Sommerfeld A. Drahtlose Telegraphie [Wireless telegraphy]. In: Frank P, von Mises R, editors. Die Differential- and Integralgleichungen der Mechanik und Physik, part II [Differential and integral equations of mechanics and physics]. 2nd ed. Chapter 23, New York (NY): Rosenberg; 1943. p. 918–977.
  • Sommerfeld A. Partial differential equations in physics. Vol. VI, Lectures on theoretical physics. New York (NY): Academic Press; 1949.
  • von Hoerschelmann H. Über die Wirkungsweise der geknickten Markonischen Senders in der drahtlosen Telegraphie [On the operation of a bent Marconi transmitted in wireless telegraphy]. Jahrb drahtl. Telegr. Teleph. 1911;5:14–34.
  • Noether F. Ausbreitung elektrischer Wellen über der Erde [Propagation of electrical waves over earth]. In: Rothe R, Ollendorff F, Pohlhausen K, editors. Chapter E, Funktionentheorie und ihre anvendung in der technik [Function theory and its application in technology]. Berlin: Springer; 1931. p. 154–170.
  • Zenneck J. Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie [On the propagation of plane electromagnetic waves along a flat surface and its relationship to wireless telegraphy]. Ann. Physik. 1907;23:846–866.
  • Niessen KF. Zur Entscheidung zwischen den beiden Sommerfeldschen Formeln für die Fortpflantzung von drahtlosen Telegraphie [On deciding between the two Sommerfeld’s formulas for the propagation of wireless telegraphy]. Ann. Phys. 5 Folge. 1937;29:585–596.
  • Norton KA. Propagation of radio waves over a plane earth. Nature. 1935;135:954–955.
  • Maclean TSM, Wu Z. Radiowave propagation over ground [Propagation of electromagnetic waves over a flat conductor]. London: Chapman & Hall; 1993.
  • Weyl H. Ausbreitung elektromagnetischer Wellen über einem ebenem Leiter [Propagation of electromagnetic waves over a flat conducto]. Ann. Physik. 1919;365:481–500.
  • Kockel B. Die Sommerfeldsche Bodenwelle [The groundwave of Sommerfeld]. Ann. Physik., 7 Folge. 1958;1:146–156.
  • Wait JR. The ancient and modern history of EM ground-wave propagation. IEEE Antennas Propag. Mag. 1998;40:7–24.
  • Collin RE. Hertzian dipole radiating over a lossy earth or sea: Some early and late 20th-century controversies. IEEE Antennas Propag. Mag. 2004;46:64–79.
  • Bouwkamp CJ. On Sommerfeld’s surface wave. Phys Rev. 1950;80:294.
  • Ott H. Oberflächenwelle und keine Ende [Surface wave and no end]. Archiv elektr Übertrag. 1951;5:343–346.
  • Baños A. Dipole radiation in the presence of a conducting half-space. New York(NY): Pergamon Press; 1966.
  • Dyab WM, Sarkar TK, Salazar-Palma M. A physics-based Green’s function for analysis of vertical electric dipole radiation over an imperfect ground plane. IEEE Trans. Antennas Propag. 2013;61:4148–4157.
  • Sarkar TK, Dyab WM, Abdallah MN, Salazar-Palma M, Prasad MVSN, Ting SW. Application of the Schelkunoff formulation to the Sommerfeld problem of a vertical electric dipole radiating over an imperfect ground. IEEE Trans. Antennas Propag. 2014;62:4162–4170.
  • Janaswamy R. Comments on ‘A physics-based Green’s function for analysis of vertical electric dipole radiation over an imperfect ground plane’. IEEE Trans. Antennas Propag. 2014;62:4907–4910.
  • Dyab WM, Sarkar TK, Salazar-Palma M. Reply to: Comments on ‘A physics-based Green’s function for analysis of vertical electric dipole radiation over an imperfect ground plane’. IEEE Trans. Antennas Propag. 2014;62:4910–4913.
  • Norton KA. The propagation of radio waves over the surface of the earth and in the upper atmosphere-part II: The propagation from vertical, horizontal, and loop antennas over a plane earth of finite conductivity. Proc. IRE. 1937;25:1203–1237.
  • van der Pol B, Niessen KF. Über die Ausbreitung elektromagnetischer Wellen über eine ebene Erde [On the propagation of electromagnetic waves over flat earth]. Ann. Phys., 5 Folge. 1930;6:585–596.
  • van der Pol B. Theory of the reflection of the light from a point source by a finitely conducting flat mirror, with an application to radiotelegraphy. Physica. 1935;2:843–853.
  • Chang DC, Fisher RJ. A unified theory on radiation of a vertical electric dipole above a dissipative earth. Radio Sci. 1974;9:1129–1138.
  • Milsom JD. Surface waves, and sky waves below 2 MHz. Hall MPM, Barclay LW, Hewitt MT, editors. Chapter 15, Propagation of radiowaves. London: The Institution of Electrical Engineers; 1996. p. 307–334.
  • Wait JR. Excitation of surface waves on conducting, stratified, dielectric-clad, and corrugated surfaces. J. Res. Nat. Bureau Stand. 1957;59:365–377.
  • King RJ. Electromagnetic wave propagation over a constant impedance plane. Radio Sci. 1969;4:225–268.
  • Green H. Derivation of the Norton surface wave using the compensation theorem. IEEE Antennas Propag. Mag. 2007;49:47–57.
  • King RWP. Electromagnetic field of a vertical dipole over an imperfectly conducting half-space. Radio Sci. 1990;25:149–160.
  • Jeon TI, Grischkowsky D. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett. 2006;88:061113-1–061113-3.
  • Novotny L. Allowed and forbidden light in near-field optics. I. A single dipolar light source. J. Opt. Soc. Am. A. 1997;14:91–104.
  • Maier SA, Atwater HA. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005;98:011101-1–011101-10.
  • Gordon R. Surface plasmon nanophotonics: a tutorial. IEEE Nanotechnol Mag. 2008;13–18.
  • Sarrazin M, Vigneron JP. Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array. Phys. Rev. B. 2005;71:075404-1–075404-5.
  • Sihvola A, Qi J, Lindell IV. Bridging the gap between plasmonics and Zenneck wave. IEEE Antennas Propag. Mag. 2010;52:124–136.
  • Gan CH, Lalouat L, Lalanne P. Optical quasicylindrical waves at dielectric interfaces. Phys. Rev. B. 2011;83:085422-1–085422-6.
  • Grosskopf J. Das Strahlungsfeld eines vertikalen Dipolsenders über geschichtetem Boden [Radiation field of the vertical dipole transmitter over stratified ground]. Hochfrequenztechnik und Elektroakustik. 1942;60:136–141.
  • Wait JR. Radiation from a vertical electric dipole over a stratified ground. IRE Trans. Antennas Propag. 1953;AP-1:9–11.
  • Wait JR. Influence of a sub-surface insulating layer on electromagnetic ground wave propagation. IEEE Trans. Antennas Propag. 1966;AP-14:755–759.
  • Wait JR, Schlak GA. New asymptotic solution for the electromagnetic fields of a dipole over a startified medium. Electron. Lett. 1967;3:421–422.
  • Wait JR. Electromagnetic waves in stratified media. New York (NY): Pergamon Press; 1970.
  • King RWP, Sandler SS. The electromagnetic field of a vertical electric dipole over the earth or sea. IEEE Trans. Antennas Propag. 1994;42:382–389.
  • Wait JR. Comments on ‘The electromagnetic field of a vertical electric dipole in the presence of a three-layered region’ by Ronold W.P. King and Sheldon S. Sandler. Radio Sci. 1998;33:251–253.
  • Gong M, Jeon T-I. Grischkowsky D. THz surface wave collapse on coated metal surfaces. Opt. Express. 2009;17:17088–17101.
  • Nevels RD, Michalski KA. On the behavior of surface plasmons at a metallo-dielectric interface. J. Lightwave Technol. 2014;32:3299–3305.
  • Cross JD, Atkins PR. Electromagnetic propagation in four-layered media due to a vertical electric dipole: a clarification. IEEE Trans. Antennas Propag. 2015;63:866–870.
  • Tai CT. Dyadic Green functions in electromagnetic theory. 2nd ed. New York (NY): IEEE Press; 1994.
  • Felsen LB. Alternative Green’s function representations for a grounded dielectric slab. Toraldo di Francia G, editor. Onde Superficiali: Lectures given at the Centro Internazionale Matematico Estivo (C.I.M.E.), Varenna (Como), Italy, September 4--13, 1961. Berlin: Springer; 2011. p. 191–219.
  • Harrington RF. Time-harmonic electromagnetic fields. New York (NY): McGraw-Hill; 1961.
  • Dmitriev VI. General method for computing the electromagnetic field in a layered medium (in Russian). Vol. 10, Computational methods and programming. Moscow: MGU Press; 1968. p. 55–65.
  • Dmitriev VI, Silkin AN, Farzan R. Tensor Green function for the system of Maxwell’s equations in a layered medium. Comput. Math. Model. 2002;11:107–118.
  • Michalski KA. The mixed-potential electric field integral equation for objects in layered media. Arch. ElekÜbertragung. 1985;39:317–322.
  • Olver FWJ, Lozier DW, Boisvert RF, Clark CW, editors. NIST handbook of mathematical functions. Cambridge: Cambridge University Press; 2010.
  • Tyras G. Radiation and propagation of electromagnetic waves. New York (NY): Academic Press; 1969.
  • Felsen LB, Marcuvitz N. Radiation and scattering of waves. Englewood Cliffs (NJ): Prentice Hall; 1973.
  • Friedman B. Principles and techniques of applied mathematics. New York (NY): Wiley; 1956.
  • Marcuvitz N, Schwinger J. On the representation of the electric and magnetic fields produced by currents and discontinuities in wave guides. I. J. Appl. Phys. 1951;22:806–819.
  • Michalski KA, Mosig JR. Multilayered media Green’s functions in integral equation formulations. IEEE Trans. Antennas Propag. 1997;45:508–519. Invited review paper.
  • Ishimaru A. Electromagnetic wave propagation, radiation, and scattering. Englewood Cliffs (NJ): Prentice Hall; 1991.
  • Ishimaru A, Thomas JR, Jaruwatanadilok S. Electromagnetic waves over half-space metamaterials of arbitrary permittivity and permeability. IEEE Trans. Antennas Propag. 2005;53:915–921.
  • Weeks WL. Electromagnetic theory for engineering applications. New York (NY): Wiley; 1964.
  • Smith RE, Houde-Walter SN, Forbes GW. Mode determination for planar waveguides using the four-sheeted dispersion relation. IEEE J. Quantum Electron. 1992;28:1520–1526.
  • Delves LM, Lyness JN. A numerical method for locating the zeros of an analytic function. Math. Comput. 1967;21:543–560.
  • Rodriguez-Berral R, Mesa F, Medina F. Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides. Int. J. RF Microwave Comput. Aided Eng. 2004;14:73–83.
  • Kravanja P, Van Barel M, Ragos O, Vrahatis MN, Zafiropoulos FA. ZEAL: A mathematical software package for computing zeros of analytic functions. Comput. Phys. Commun. 2000;124:212–232.
  • Smith RE, Houde-Walter SN. The migration of bound and leaky solutions to the waveguide dispersion relation. J. Lightwave Technol. 1993;11:1760–1768.
  • Bakhtazad A, Abiri H, Ghayour R. A general transform for regularizing planar open waveguide dispersion relation. J. Lightwave Technol. 1997;15:383–390.
  • Rodríguez-Berral R, Mesa F, Medina F. Appropriate formulation of the characteristic equation for open nonreciprocal layered waveguides with different upper and lower half-spaces. IEEE Trans. Microwave Theory Technol. 2005;53:1613–1623.
  • Griewank A, Walther A. Evaluating derivatives. 2nd ed. Principles and techniques of algorithmic differentiation. Philadelphia (PA): SIAM; 2008.
  • Markus A. Modern Fortran in practice. Cambridge: Cambridge University Press; 2012.
  • Bouwkamp CJ. Notes on the conference. Toraldo di Francia G, editor. Onde Superficiali: Lectures given at the Centro Internazionale Matematico Estivo (C.I.M.E.), Varenna (Como), Italy, September 4–13, 1961. Berlin: Springer; 2011. p. 35–55
  • Kuester EF, Chang DC. Evaluation of Sommerfeld integrals associated with dipole sources above earth. Boulder: Department of Electrical Engineering, University of Colorado; 1979. Electromagnets Lab. Scientific Report 43.
  • Kong JA. Electromagnetic wave theory. 2nd ed. New York (NY): Wiley; 1990.
  • Gogoladze V. On the propagation of radio waves in the problem of A. Sommerfeld. J. Phys. (USSR). 1947;11:161–162.
  • Schelkunoff SA. Electromagnetic waves. New York (NY): Van Nostrand; 1943.
  • Sarkar TK, Dyab W, Abdallah MN, Salazar-Palma M, Prasad MVSN. Physics of propagation in a cellular wireless communication environment. Radio Sci. Bull. 2012;5–21.
  • Chew WC. Waves and fields in inhomogeneous media. New York (NY): IEEE Press; 1995.
  • Barlow HM, Cullen AL. Surface waves. Proc IEE -- Pt III. 1953;100:329–341.
  • Shakir SA, Turner AF. Method of poles for a multilayer thin-film waveguides. Appl. Phys. A. 1982;29:151–155.
  • Shevchenko VV. Surface electromagnetic waves on the plain boundaries of electroconductive media of high conductivity, Zenneck’s wave (in Russian). J. Radio Electron. 2013;1–19.
  • Burstein E, Hartstein A, Schoenewald J, et al. Surface polaritons – electromagnetic waves at interfaces. Burstein E, De Martini F, editors. Polaritons: Proceedings of the first Taormina research conference on the structure of matter, October 2–6, 1972, Taormina, Italy, and reprints of selected key papers from the literature. New York (NY): Pergamon Press; 1974. p. 89–108.
  • Mosig JR, Gardiol FE. A dynamical radiation model for microstrip structures. In: Hawkes PW, editor. Advances in electronics and electron physics. Vol. 59, New York (NY): Academic Press; 1982. p. 139–237.
  • Michalski KA. Extrapolation methods for Sommerfeld integral tails. IEEE Trans. Antennas Propag. 1998;46:1405–1418. Invited review paper.
  • Mosig JR. The weighted averages algorithm revisited. IEEE Trans. Antennas Propag. 2012;60:2011–2018.
  • Golubovic R, Polimeridis AG, Mosig JR. Efficient algorithms for computing Sommerfeld integral tails. IEEE Trans. Antennas Propag. 2012;60:2409–2417.
  • Mosig JR. Weighted Averages and Double Exponential algorithms. IEICE Trans. Commun. 2013;E96-B:2355–2363. Invited paper.
  • Lambot S, Slob E, Vereecken H. Fast evaluation of zero-offset Green’s function for layered media with application to ground-penetrating radar. Geophys. Res. Lett. 2007;34:1–6.
  • Gay-Balmaz P, Mosig JR. Three dimensional planar radiating structures in stratified media. Int. J. Microwave Millimeter-Wave Comput. Aided Eng. 1997;7:330–343.
  • Michalski KA, Mosig JR. Analysis of a plane wave-excited subwavelength circular aperture in a planar conducting screen illuminating a multilayer uniaxial sample. IEEE Trans. Antennas Propag. 2015;63.
  • Weniger EJ. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 1989;10:189–371.
  • Evans G. Practical numerical integration. New York (NY): Wiley; 1993.
  • Sidi A. Practical extrapolation methods. Theory and applications. Cambridge: Cambridge University Press; 2003.
  • Barkeshli S, Pathak PH, Marin M. An asymptotic closed-form microstrip surface Green’s function for the efficient moment method analysis of mutual coupling in microstrip antennas. IEEE Trans. Antennas Propag. 1990;38:1374–1383.
  • Barkeshli S, Pathak PH. Radial propagation and steepest-descent path integral representations of the planar microstrip dyadic Green’s function. Radio Sci. 1990;25:161–174.
  • Tamir T, Oliner AA. Guided complex waves. Part 1. Fields at an interface. Proc. IEE. 1963;110:310–324.
  • Cullen AL. The excitation of plane surface waves. Proc. IEE -- Pt IV. 1954;101:225–234.
  • Wait JR. Transmission and reflection of electromagnetic waves in the presence of stratified media. J. Res. Nat. Bureau Stand. 1958;61:205–232.
  • Ewing WM, Jardetzky WS, Press F. Elastic waves in layered media. New York (NY): McGraw-Hill; 1957.
  • Mosig JR, Melcón AA. Green’s functions in lossy layered media: integration along the imaginary axis and asymptotic behavior. IEEE Trans. Antennas Propag. 2003;51:3200–3208.
  • Schelkunoff SA. Modified Sommerfeld’s integral and its applications. Proc. IRE. 1936;24:1388–1398.
  • Cardona M. Fresnel reflection and surface plasmons. Am. J. Phys. 1971;39:1277.
  • Dyab WMG, Abdallah MN, Sarkar TK, Salazar-Palma M. On the relation between surface plasmons and Sommerfeld’s surface electromagnetic waves. Digest IEEE MTT-S International Symposium; Seattle (WA); 2013. p. 1–14.
  • Kukushkin AV. On the existence conditions for a fast surface wave. Phys-Usp. 2012;55:1124–1133.
  • Zucker FJ. Theory and applications of surface waves. Il Nuovo Cimento. 1952;9:450–473.
  • Hill DA, Wait JR. Excitation of the Zenneck surface wave by a vertical aperture. Radio Sci. 1978;13:969–977.
  • Goubau G. Über die Zennecksche Bodenwelle. Z. Angew. Phys. 1951;3:103–107.
  • Barlow HM, Brown J. Radio surface waves. Oxford: Oxford University Press; 1962.
  • Bashkuev YuB. Khaptanov VB, Dembelov MG. Experimental proof of the existence of a surface electromagnetic wave. Technol. Phys. Lett. 2010;36:136–139.
  • Lurye J. The electromagnetic field of a dipole over a dielectric slab on a finitely conducting ground plane. New York (NY): Institute for Mathematical Sciences, New York University; 1954; Division of Electromagnetic Research Report No. EM-65.
  • Wait JR. Asymptotic theory for dipole radiation in the presence of a lossy slab lying on a conducting half-space. IEEE Trans. Antennas Propag. 1967;AP-15:645–648.
  • Michalski KA. On the efficient evaluation of integrals arising in the Sommerfeld halfspace problem. In: Hansen RC editor. Moment methods in antennas and scatterers. Boston: Artech House; 1990. p. 325–331; reprinted from IEE Proceedings, Pt. H: Microwaves Optics and Antennas, Vol. 132, p. 213–218, August 1985.
  • Brand Y. Antennes imprimées SSFIP: de l’élément isolé au réseau planaire [Printed SSFIP antennas: isolated element on a planar network] [dissertation]. Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne; 1996.
  • Mesa F, Boix RR, Medina F. Closed-form expressions of multilayered planar Green’s functions that account for the continuous spectrum in the far field. IEEE Trans. Microwave Theory Technol. 2008;56:1601–1614.
  • Ott H. Bemerkung sum Beweis von W.H. Wise über die Nichtexistenz der Zenneckschen Oberflächenwelle im Antennenfeld [Remarks on the proof of W.H. Wise of the nonexistence of the Zenneck surface wave in the field of an antenna]. Z. Naturforschg. 1953;8a:100–103.
  • Wait JR. A note on surface waves and ground waves. IEEE Trans. Antennas Propag. 1965;AP-13:996–997.
  • Tsai M, Chen C, Alexopoulos NG. Sommerfeld integrals in modeling interconnects and microstrip elements in multi-layered media. Electromagnetic. 1998;18:267–288.
  • Firouzeh ZH, Vandenbosch GAE, Moini R, et al. Efficient evaluation of Green’s functions for lossy half-space problems. Progr. Electromagn. Res. 2010; 109:139–157.
  • Krogh FT, Snyder WV. Algorithm 699: a new representation of Patterson’s quadrature formulae. ACM Trans. Math. Softw. 1991;17:457–460.
  • Homeier HHH. Scalar Levin-type sequence transformations. J. Comput. Appl. Math. 2000;122:81–147.
  • Parise M. An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space. J. Electromagn. Waves Appl. 2014;28:932–942.
  • Petrillo L, Jangal F, Darces M, et al. Towards a better excitation of the surface wave. Progr. Electromagn. Res. M. 2010;13:17–28.
  • Mahmoud SF, Antar YMM. High frequency ground wave propagation. IEEE Trans. Antennas Propag. 2014;62:5841–5846.
  • Johnson PB, Christy RW. Optical constants of noble metals. Phys. Rev. B. 1972;6:4370–4379.
  • Michalski KA. On the low-order partial-fraction fitting of dielectric functions at optical wavelengths. IEEE Trans. Antennas Propag. 2013;61:6128–6135.
  • Bennett JM, Stanford JL, Ashley EJ. Optical constants of silver sulfide tarnish films. J. Opt. Soc. Am. 1970;60:224–232.
  • Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens. Actuators B. 1999;54:3–15.
  • Lynch DW, Hunter WR. Comments on the optical constants of metals and an introduction to the data for several metals. In: Palik ED, editor. Handbook of optical constants of solids. San Diego (CA): Academic Press; 1998. p. 275–316.
  • Michalski KA, Zheng D. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory. IEEE Trans. Antennas Propag. 1990;38:335–344.
  • Hsu CIG, Harrington RF, Michalski KA, Zheng D. Analysis of a multiconductor transmission lines of arbitrary cross-section in multilayered uniaxial media. IEEE Trans. Microwave Theory Technol. 1993;41:70–78.
  • Ho MH, Michalski KA, Chang K. Waveguide excited microstrip patch antenna -- theory and experiment. IEEE Trans. Antennas Propag. 1994;42:1114–1125.
  • Michalski KA. Electromagnetic field computation in planar multilayers. In: Chang K editor. Encyclopedia of RF and microwave engineering. Vol. 2. Hoboken (NJ): Wiley-Interscience; 2005. p. 1163–1190.
  • Hessel A. Antenna theory-part 2. In: Collin RE, Zucker FJ, editors. New York (NY): McGraw-Hill; 1969. Chapter 19, General characteristics of traveling-wave antennas; p. 151–258.
  • Mittra R, Lee SW. Analytical techniques in the theory of guided waves. New York (NY): Macmillan; 1971.
  • Visser TD, Blok H, Lenstra D. Modal analysis of planar waveguide with gain and losses. IEEE J. Quant. Electron. 1995;31:1803–1810.
  • Tai CT. The effect of a grounded slab on the radiation from a line source. J. Appl. Phys. 1951;22:405–414.
  • Brekhovskikh LM. Waves in layered media. 2nd ed. New York (NY): Academic Press; 1980.
  • Baccarelli P, Burghignoni P, Frezza F, Galli A, Lovat G, Jackson DR. Uniform analytical representation of the continuous spectrum excited by dipole sources in a multilayer dielectric structure through weighted cylindrical leaky waves. IEEE Trans. Antennas Propag. 2004;52:653–664.
  • Poppe GPM, Wijers CMJ. More efficient computation of the complex error function. ACM Trans. Math. Softw. 1990;16:38–46.
  • Weideman JAC. Computation of the complex error function. SIAM J Numer Anal. 1994;31:1497–1518.
  • Zaghloul MR, Ali AN. Algorithm 916: Computing the Faddeyeva and Voigt functions. ACM Trans. Math. Softw. 2011;38:15:1–15:22.
  • Wait JR. Electromagnetic surface waves. In: Saxton JA, editor. Advances in radio research. Vol. 1. London: Academic Press; 1964. p. 157–217.
  • Vogler LE. A note on the attenuation function for propagation over flat layered ground. IEEE Trans. Antennas Propag. 1964;12:240–242.
  • King RJ, Schlak GA. Groundwave attenuation function for propagation over a highly inductive earth. Radio Sci. 1967;2:687–693.