221
Views
14
CrossRef citations to date
0
Altmetric
Articles

Comparison of iterative solvers for electromagnetic analysis of plasmonic nanostructures using multiple surface integral equation formulations

, &
Pages 456-472 | Received 07 Sep 2015, Accepted 07 Nov 2015, Published online: 17 Feb 2016

References

  • Schuller JA, Barnard ES, Cai W, et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 2010;9:193–204.
  • Maier SA. Plasmonics: fundamentals and applications. New York (NY): Springer; 2007.
  • Taminiau TH, Stefani FD, Segerink FB, et al. Optical antennas direct single-molecule emission. Nat. Photonics. 2008;2:234–237.
  • Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv. Opt. Photonics. 2009;1:438–483.
  • Taminiau TH, Stefani FD, van Hulst NF. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt. Express. 2008;16:10858–10866.
  • Sugita T, Yanazawa K, Maeda S, et al. Radiation pattern of plasmonic nano-antennas in a homogeneous medium. Opt. Express. 2014;22:13263–13268.
  • Filter R, Słowik K, Straubel J, et al. Nanoantennas for ultrabright single photon sources. Opt. Lett. 2014;39:1246–1249.
  • Kern AM, Martin OJF. Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A. 2009;26:732–740.
  • Taboada JM, Rivero J, Obelleiro F, et al. Method-of-moments formulation for the analysis of plasmonic nanooptical antennas. J. Opt. Soc. Am. A. 2011;28:1341–1348.
  • Solís DM, Taboada JM, Obelleiro F, et al. Optimization of an optical wireless nanolink using directive nanoantennas. Opt. Express. 2013;21:2369–2377.
  • Solís DM, Taboada JM, Obelleiro F, et al. Toward ultimate nanoplasmonics modeling. ACS Nano. 2014;8:7559–7570.
  • Draine BT. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 1988;333:848–872.
  • Hao F, Nehl CL, Hafner JH, et al. Plasmon resonances of a gold nanostar. Nano Lett. 2007;7:729–732.
  • Jin J. The finite element method in electromagnetics. New York (NY): Wiley; 2002.
  • Ylä-Oijala P, Taskinen M, Järvenpää S. Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods. Radio Sci. 2005;40:RS6002.
  • Barsan V, Lungu RP. Trends in electromagnetism – from fundamentals to applications. InTech; 2012. Chapter 7, Fast preconditioned Krylov methods for boundary integral equations in electromagnetic scattering. p. 155–176. Available from: http://cdn.intechopen.com/pdfs-wm/33438.pdf.
  • Ergül Ö, Gürel L. Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm. IEEE Trans Antenn Propag. 2009;57:176–187.
  • Araújo MG, Taboada JM, Rivero J, et al. Comparison of surface integral equations for left-handed materials. Prog. Electromagnet. Res. 2011;118:425–440.
  • Ergül Ö. Fast and accurate analysis of homogenized metamaterials with the surface integral equations and the multilevel fast multipole algorithm. IEEE Antennas Wirel. Propag. Lett. 2011;10:1286–1289.
  • Araújo MG, Taboada JM, Solís DM, et al. Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers. Opt. Express. 2012;20:9161–9171.
  • Saad Y, Schultz M. Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986;7:856–869.
  • Kelley CT. Iterative methods for linear and nonlinear equations. Philadelphia (PA): Society for Industrial and Applied Mathematics; 1995.
  • Ergül Ö. Accurate and efficient solutions of electromagnetics problems with the multilevel fast multipole algorithm [dissertation]. Ankara (Turkey): Bilkent University; 2009.
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York (NY): John Wiley; 1983.
  • Gomez-Sousa H, Rubiños-Lopez O, Martinez-Lorenzo JA. 2014. Junction modeling for piecewise non-homogeneous geometries involving arbitrary materials. International Symposium on Antennas and Propagation; 2014 July 6–11, Memphis, Tennessee, USA, 2196–2197, IEEE Antennas and Propagation Society (AP-S).
  • Kim OS, Meincke P, Breinbjerg O. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions. Radio Sci. 2004;39:RS5003
  • Taboada JM, Araújo MG, Bértolo JM, et al. MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics. Prog. Electromagnet. Res. 2010;105:15–30.
  • Teran JM. Givens QR and GMRES. Math 270C course notes. Mathematics Department, UCLA; 2011 [cited 2015 Sep 7]. Available from: https://www.math.ucla.edu/~jteran/270c.1.11s/notes_wk2.pdf.
  • Gibson WC. The method of moments in electromagnetics. 2nd ed. New York (NY): Chapman & Hall/CRC; 2014.
  • Landesa L, Araújo MG, Taboada JM, et al. Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies. Opt. Express. 2012;20:17237–17249.
  • Geuzaine C, Remacle J-F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 2009;79:1309–1331.
  • Araújo MG, Taboada JM, Rivero J, et al. Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm. Opt. Lett. 2012;37:416–418.
  • The Appentra team. Parallware: automatic parallelization of sequential codes [computer software]. A Coruña (Spain): Appentra Solutions SL, 2015. Available from: http://www.appentra.com/products/parallware/.
  • The OpenMP team. OpenMP [application programming interface (API)]. OpenMP Architecture Review Board, 2015. Available from: http://www.openmp.org.
  • EM Software & Systems - S.A. (Pty) Ltd.. Modelling of dielectric materials in FEKO. Technical report; 2005 [cited 2015 Sep 7]. Available from: https://www.feko.info/about-us/quarterly/FEKO_Quarterly_Mar_2005.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.