4,214
Views
2
CrossRef citations to date
0
Altmetric
Invited Review Article

Efficient computation of Sommerfeld integral tails – methods and algorithms

ORCID Icon &
Pages 281-317 | Received 12 Nov 2015, Accepted 02 Dec 2015, Published online: 30 Mar 2016

References

  • Tyras G. Radiation and propagation of electromagnetic waves. New York (NY): Academic Press; 1969.
  • Piessens R. Chapter 9, Hankel transforms. In: Poularikas AD,editor. Transforms and applications handbook. 3rd ed. Boca Raton (FL): CRC Press; 2010. p. 719–745.
  • Michalski KA, Mosig JR. Multilayered media Green’s functions in integral equation formulations (Invited review paper). IEEE Trans. Antennas Propag. 1997;45:508–519.
  • Michalski KA. Electromagnetic field computation in planar multilayers. In: Chang K,editor. Encyclopedia of RF and microwave engineering. Vol. 2. Hoboken (NJ): Wiley-Interscience; 2005. p. 1163–1190.
  • Olver FWJ, Lozier DW, Boisvert RF, Clark CW, editors. NIST Handbook of mathematical functions. New York (NY): Cambridge University Press; 2010.
  • Singh NP, Mogi T. Electromagnetic response of a large circular loop source on a layered earth: a new computation method. Pure Appl. Geophys. 2005;162:181–200.
  • Michalski KA. Spectral domain analysis of a circular nano-aperture illuminating a planar layered sample. Prog. Electromagn. Res. B. 2011;28:307–323.
  • Michalski KA, Mosig JR. On the plane wave-excited subwavelength circular aperture in a thin perfectly conducting flat screen. IEEE Trans. Antennas Propag. 2014;62:2121–2129.
  • Michalski KA, Mosig JR. Analysis of a plane wave-excited subwavelength circular aperture in a planar conducting screen illuminating a multilayer uniaxial sample. IEEE Trans. Antennas Propag. 2015;63:2054–2063.
  • Gay-Balmaz P, Mosig JR. Three dimensional planar radiating structures in stratified media. Int. J. Microwave Millimeter-Wave Comput-Aided Eng. 1997;7:330–343.
  • Bunger R, Arndt F. Efficient MPIE approach for the analysis of three-dimensional microstrip structures in layered media. IEEE Trans. Microwave Theory Tech. 1997;45:1141–1153; erratum, ibid., 1998;46:202.
  • Michalski KA. Extrapolation methods for Sommerfeld integral tails (Invited review paper). IEEE Trans. Antennas Propag. 1998;46:1405–1418.
  • Paulus M, Gay-Balmaz P, Martin OJF. Accurate and efficient computation of the Green’s tensor for stratified media. Phys. Rev. E. 2000;62:5797–5807.
  • Simsek E, Liu QH, Wei B. Singularity subtraction for evaluation of Green’s functions for multilayer media. IEEE Trans. Microwave Theory Tech. 2006;54:216–225.
  • Golubovic R, Polimeridis AG, Mosig JR. Efficient algorithms for computing Sommerfeld integral tails. IEEE Trans. Antennas Propagat. 2012;60:2409–2417.
  • Koufogiannis ID, Mattes M, Mosig JR. On the development and evaluation of spatial-domain Green’s functions for multilayered structures with conductive sheets. IEEE Trans. Microwave Theory Tech. 2015;63:20–29.
  • Elhay S, Kautsky J. ALGORITHM 655 IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures. ACM Trans. Math. Softw. 1987;13:399–415.
  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes: the art of scientific computing. 3rd ed. New York (NY): Cambridge University Press; 2007.
  • Takahasi H, Mori M. Double exponential formulas for numerical integration. Publ. RIMS, Kyoto Univ. 1974;9:721–741.
  • Evans GA, Forbes RC, Hyslop J. The tanh transformation for singular integrals. Int. J. Comput. Math. 1984;15:339–358.
  • Mosig JR. Weighted averages and double exponential algorithms (Invited paper). IEICE Trans. Commun. 2013;E96-B:2355–2363.
  • Johnson WA, Dudley DG. Real axis integration of Sommerfeld integrals: Source and observation points in air. Radio Sci. 1983;18:175–186.
  • Katehi PB, Alexopoulos NG. Real axis integration of Sommerfeld integrals with applications to printed circuit antennas. J. Math. Phys. 1983;24:527–533.
  • Mosig JR, Sarkar TK. Comparison of quasi-static and exact electromagnetic fields from a horizontal electric dipole above a lossy dielectric backed by an imperfect ground plane. IEEE Trans. Microwave Theory Tech. 1986;MTT-34:379–387.
  • Tsai M, Chen C, Alexopoulos NG. Sommerfeld integrals in modeling interconnects and microstrip elements in multi-layered media. Electromagnetics. 1998;18:267–288.
  • Mittra R, Lee SW. Analytical techniques in the theory of guided waves. New York (NY): Macmillan; 1971.
  • Michalski KA, Butler CM. Evaluation of Sommerfeld integrals arising in the ground stake antenna problem. IEE Proc. Part H. 1987;134:93–97.
  • Lambot S, Slob E, Vereecken H. Fast evaluation of zero-offset Green’s function for layered media with application to ground-penetrating radar. Geophys. Res. Lett. 2007;34:L21405-1--6.
  • Slob E, Lambot S. Chapter 15, Direct determination of electric permittivity and conductivity from air-launched GPR surface-reflection data. In: Miller RD, Bradford JH, Holliger K,editors. Advances in near-surface seismology and ground-penetrating radar. Tulsa (OK): Society of Exploration Geophysicists; 2010. p. 251–261.
  • Jiménez E, Cabrera FJ, Cuevas del Río JG. Sommerfeld: a FORTRAN library for computing Sommerfeld integrals. In: Digest IEEE AP-S international symposium; July; Vol. 2; Baltimore (MD): 1996. p. 966–969
  • Lytle RJ, Lager DL. Numerical evaluation of Sommerfeld integrals. Livermore (CA): Lawrence Livermore Laboratory; 1974. Rep. UCRL-51688.
  • Tsang L, Brown R, Kong JA, et al. Numerical evaluation of electromagnetic fields dues to dipole antennas in the presence of stratified media. J. Geophys. Res. 1974;79:2077–2080.
  • Bubenik DM. A practical method for the numerical evaluation of Sommerfeld integrals. IEEE Trans. Antennas Propag. 1977;AP-25:904–906.
  • Kuo WC, Mei KK. Numerical approximations of the Sommerfeld integral for fast convergence. Rad. Sci. 1978;13:407–415.
  • Kuester EF, Chang DC. Evaluation of Sommerfeld integrals associated with dipole sources above earth. Scientific electromagnet lab report 43. Boulder (CO): Department of Electrical Engineering, University of Colorado; 1979.
  • Mohsen A. On the evaluation of Sommerfeld integrals. IEE Proc. Part H. 1982;129:177–182.
  • Mosig JR, Gardiol FE. Analytic and numerical techniques in the Green’s function treatment of microstrip antennas and scatterers. IEE Proc. Part H. 1983;130:175–182.
  • Barkeshli S, Pathak PH. Radial propagation and steepest-descent path integral representations of the planar microstrip dyadic Green’s function. Radio Sci. 1990;25:161–174.
  • Dvorak SL. Application of the Fast Fourier Transform to the computation of the Sommerfeld integral for a vertical electric dipole above a half-space. IEEE Trans. Antennas Propag. 1992;40:798–805.
  • Firouzeh ZH, Vandenbosch GAE, Moini R, et al. Efficient evaluation of Green’s functions for lossy half-space problems. Prog. Electromagn. Res. 2010;109:139–157.
  • Golubović Nićiforović R, Polimeridis AG, Mosig JR. Fast computation of Sommerfeld integral tails via direct integration based on double exponential-type quadrature formulas. IEEE Trans. Antennas Propag. 2011;59:694–699.
  • Volskiy V, Vandenbosch GAE, Golubović Nićiforović R, et al. Numerical integration of Sommerfeld integrals based on singularity extraction techniques and double exponential-type quadrature formulas. In: Proceedings of 6th European conference on antennas and propagation (EUCAP); March; Prague, Czech Republic; 2012. p. 3215–3218.
  • Chatterjee D, Rao SM, Kluskens MS. Improved evaluation of Sommerfeld integrals for microstrip antenna problems. In: Proceedings of 2013 URSI commission B international symposium on electromagnetic theory; May; Hiroshima, Japan; 2013. p. 981–984.
  • Sainath K, Teixeira FL, Donderici B. Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified medium. Phys. Rev. E. 2014;89:013312-1-18
  • Karabult EP, Aksun MI. A novel approach for the efficient and accurate computation of Sommerfeld integral tails. In: Proceedings of international conference on electromagnetics in advanced applications (ICEAA); September; Torino, Italy; 2015. p. 646–649.
  • Goldman M. Forward modelling for frequancy domain marine electromagnetic systems. Geophys. Prosp. 1987;35:1042–1064.
  • Mosig JR, Melcón AA. Green’s functions in lossy layered media: Integration along the imaginary axis and asymptotic behavior. IEEE Trans. Antennas Propag. 2003;51:3200–3208.
  • Kourkoulos VN, Cangellaris AC. Accurate approximation of Green’s functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves. IEEE Trans. Antennas Propag. 2006;54:1568–1576.
  • Yuan M, Sarkar TK. Computation of the Sommerfeld integral tails using the matrix pencil method. IEEE Trans. Antennas Propag. 2006;54:1358–1362.
  • Alparslan A, Aksun MI, Michalski KA. Closed-form Green’s functions in planar layered media for all ranges and materials. IEEE Trans. Microwave Theory Tech. 2010;58:602–613.
  • Kurup DG. Analytical expressions for spatial domain Green’s functions in layered media. IEEE Trans. Antennas Propag. 2015;63:1–7.
  • Michalski KA. On the efficient evaluation of integrals arising in the Sommerfeld halfspace problem. In: Hansen RC, editor. Moment methods in antennas and scatterers. Boston: Artech House; 1990. p. 325–331.
  • Wu B, Tsang L. Fast computation of layered medium Green’s functions of multilayers and lossy media using fast all-modes method and numerical modified steepest descent path method. IEEE Trans. Microwave Theory Tech. 2008;56:1446–1454.
  • Hochman A, Leviatan Y. A numerical methodology for efficient evaluation of 2D Sommerfeld integrals in the dielectric half-space problem. IEEE Trans. Antennas Propag. 2010;58:413–431.
  • Michalski KA, Mosig JR. The Sommerfeld halfspace problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes (Invited review article). J. Electromagn. Waves Appl. 2016;30:142. Available from: http://dx.doi.org/10.1080/09205071.2015.1093964
  • Markus A. Modern Fortran in practice. Cambridge (UK): Cambridge University Press; 2012.
  • Schwarz HR. Numerical analysis, a comprehensive introduction. New York (NY): Wiley; 1989.
  • Kythe PK, Schäferkotter MR. Handbook of computational methods for integration. Boca Raton (FL): Chapman & Hall/CRC Press; 2005.
  • Goodwin ET. The evaluation of integrals of the form ∫∞-∞f(x)e-x2dx. Proc. Cambridge Philos. Soc. 1949;45:241–245.
  • Schwartz C. Numerical integration of analytic functions. J. Comp. Phys. 1969;4:19–29.
  • Evans G. Practical numerical integration. New York (NY): Wiley; 1993.
  • Krommer AR, Ueberhuber CW. Computational integration. Philadelphia (PA): SIAM; 1998.
  • Trefethen LN, Weideman JAC. The exponentially convergent trapezoidal rule. SIAM Rev. 2014;56:385–458.
  • Stenger F. Integration formulae based on the trapezoidal formula. J. Inst. Math. Appl. 1973;12:103–114.
  • Takahasi H, Mori M. Quadrature formulas obtained by variable transformation. Numer. Math. 1973;21:206–219.
  • Squire W. A quadrature method for finite intervals. Int. J. Numer. Methods Eng. 1976;10:708–712.
  • Haber S. The tanh rule for numerical integration. SIAM J. Numer. Anal. 1977;14:668–685.
  • Mori M. Quadrature formulas obtained by variable transformation and the DE-rule. J. Comput. Appl. Math. 1985;12 &13:119–130.
  • Mori M. Discovery of the double exponential transformation and its developments. Publ RIMS, Kyoto Univ. 2005;41:897–935.
  • Bailey DH, Jeyabalan K, Li XS. A comparison of three high-precision quadrature schemes. Exp. Math. 2005;3:317–329.
  • Bailey DH, Borwein JM. Effective error bounds in Euler-Maclaurin-based quadrature schemes. In: Proceedings of 20th international symposium on high-performance computing in an advanced collaborative environment (HPCS’06); May; St John’s (NL), Canada: IEEE Computer Society; 2006. p. 1–7.
  • Koufogiannis ID, Polimeridis AG, Mattes M, et al. Real axis integration of Sommerfeld integrals with error estimation. In: Proceedings of 6th European conference on antennas and propagation (EUCAP); March; Prague, Czech Republic; 2012. p. 719–723.
  • Borwein JM, Bailey DH, Girgensohn R. Experimentation in mathematics, computational path to discovery. Natick (MA): A. K. Peters; 2004.
  • Ooura T. DE-quadrature package [2006 December]. Available from: http://www.kurims.kyoto-u.ac.jp/ooura/intde.html.
  • Ye L. Numerical quadrature: theory and computation [master’s thesis]. Halifax, Nova Scotia: Dalhousie University, Faculty of Computer Science; 2006.
  • Squire W. An efficient iterative method for numerical evaluation of integrals over a semi-infinite range. Int. J. Numer. Methods Eng. 1976;10:478–484.
  • Brezinski C, Redivo Zaglia M. Extrapolation methods, theory and practice. New York (NY): North-Holland; 1991.
  • Weniger EJ. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 1989;10:189–371.
  • Wimp J. Sequence transformations and their applications. New York (NY): Academic Press; 1981.
  • Levin D. Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math., Sect. B. 1973;3:371–388.
  • Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. 7th ed. New York (NY): Academic Press; 2007.
  • Salzer HE. A simple method for summing certain slowly convergent series. J. Math. Phys. 1955;33:356–359.
  • Laurie D. Appendix A: convergence acceleration. In: Bornemann F, Laurie D, Wagon S, Waldvogel J, editors. The SIAM 100-digit challenge. Philadelphia (PA): SIAM; 2004. p. 225–258.
  • Smith DA, Ford WF. Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal. 1979;16:223–240.
  • Homeier HHH. Scalar Levin-type sequence transformations. J. Comput. Appl. Math. 2000;122:81–147.
  • Smith DA, Ford WF. Numerical comparison of nonlinear convergence accelerators. Math. Comput. 1982;38:481–499.
  • Fessler T, Ford WF, Smith DA. HURRY: an acceleration algorithm for scalar sequence and series. ACM Trans. Math. Software. 1983;9:346–354.
  • Sidi A. An algorithm for a special case of a generalization of the Richardson extrapolation process. Numer. Math. 1982;38:299–307.
  • Davis PJ, Rabinowitz P. Methods of numerical integration. 2nd ed. New York (NY): Academic Press; 1984.
  • Sidi A. Practical extrapolation methods. Theory and applications. Cambridge: Cambridge University Press; 2003.
  • Shanks D. Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 1955;34:1–42.
  • Wynn P. On a device for computing the em(Sn) transformations. Math. Tables Aids Comput. 1956;10:91–96.
  • Piessens R, deDoncker-Kapenga E, Überhauer CW, et al. QUADPACK: a subroutine package for automatic integration. New York (NY): Springer-Verlag; 1983.
  • Bhowmic S, Bhattacharya R, Roy D. Iterations of convergence accelerating nonlinear transforms. Comput. Phys. Commun. 1989;54:31–46.
  • Homeier HHH. A hierarchically consistent, iterative sequence transformation. Numer. Algorithms. 1994;8:47–81.
  • Mosig JR, Gardiol FE, Hawkes PW, editors. A dynamical radiation model for microstrip structures. Vol. 59, Advances in electronics and electron physics. New York (NY): Academic Press; 1982. p. 139–237
  • Mosig JR. Integral equation technique. In: Itoh T, editor. Numerical techniques for microwave and millimeter-wave passive structures. New York (NY): Wiley; 1989. p. 133–213.
  • Drummond JE. Convergence speeding, convergence and summability. J. Comput. Appl. Math. 1984;11:145–159.
  • Scraton RE. A note on the summation of divergent power series. Proc. Cambridge Philos. Soc. 1969;66:109–114.
  • Wynn P. A note on the generalized Euler transformation. Comput. J. 1971;14:437–441.
  • Scraton RE. The generalized Euler transformation. Comput. J. 1972;15:258.
  • Longman IM. Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Philos. Soc. 1956;52:764–768.
  • Goodwin ET, editor. Modern computing methods. Philosophical Library: New York (NY); 1961.
  • Polimeridis AG, Golubović Nićiforović RM, Mosig JR. Acceleration of slowly convergent series via the generalized weighted-averages method. Prog. Electromagn. Res. M. 2010;14:233–245.
  • Van Deun J, Cools R. Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Commun. 2008;178:578–590.
  • Golubović R, Polimeridis AG, Mosig JR. The weighted averages method for semi-infinite range integrals involving products of Bessel functions. IEEE Trans. Antennas Propag. 2013;61:5589–5596.
  • Krogh FT, Snyder WV. Algorithm 699: A new representation of Patterson’s quadrature formulae. ACM Trans. Math. Softw. 1991;17:457–460.
  • Trefethen LN, Weideman JAC. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 2008;50:67–87.
  • Alaylioglu A, Evans GA, Hyslop J. The evaluation of oscillatory integrals with infinite limits. J. Comp. Phys. 1973;13:433–438.
  • Squire W. Partition-extrapolation methods for numerical quadrature. Int. J. Comput. Math. Sect. B. 1975;55:81–91.
  • Sidi A. The numerical evaluation of very oscillatory infinite integrals by extrapolation. Math. Comput. 1982;38:517–529.
  • Chave AD. Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics. 1983;48:1671–1686.
  • Lyness JN. Integrating some infinite oscillating tails. J. Comput. Appl. Math. 1985;12–13:109–117.
  • Sidi A. A user-friendly extrapolation method for oscillatory infinite integrals. Math. Comput. 1988;51:249–266.
  • Rabinowitz P. Extrapolation methods in numerical integration. Numer. Algorithms. 1992;3:17–28.
  • Espelid TO, Overholt KJ. DQAINF: An algorithm for automatic integration of infinite oscillating tails. Numer. Algorithms. 1994;8:83–101.
  • Lucas SK, Stone HA. Evaluating infinite integrals involving Bessel functions of arbitrary order. J. Comput. Appl. Math. 1995;64:217–231.
  • Sauter T. Computation of irregularly oscillating integrals. Appl. Numer. Math. 2000;35:245–264.
  • Slevinsky RM, Safouhi H. A comparative study of numerical steepest descent, extrapolation, and sequence transformation methods in computing semi-infinite integrals. Numer. Algorithms. 2012;60:315–337.
  • Mosig JR. The weighted averages algorithm revisited. IEEE Trans. Antennas Propag. 2012;60:2011–2018.
  • Temme NM. An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives. J. Comput. Phys. 1979;32:270–279.
  • Hasegawa T, Sidi A. An automatic integration procedure for infinite range integrals involving oscillatory kernels. Numer. Algorithms. 1996;13:1–19.
  • Abramowitz M, Stegun IA, editors. Handbook of Mathematical Functions. New York (NY): Dover; 1965.
  • Bailey DH, Borwein JM. Hand-to-hand combat with thousand-digit integrals. J. Comput. Sci. 2012;3:77–86.
  • Sidi A. A user-friendly extrapolation method for computing infinite range integrals of products of oscillatory functions. IMA J. Numer. Anal. 2012;32:602–631.
  • Lucas SK. Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Math. 1995;64:269–282.
  • Ratnanather JT, Kim JH, Zhang S. Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 2014;40:14.1–14.12.
  • Ogata H, Sugihara M. Interpolation and quadrature formulae whose abscissae are the zeros of the Bessel functions (in Japanese). Trans. Jpn. Soc. Indus. Appl. Math. 1996;6:39–66.
  • Ogata H, Sugihara M. Quadrature formulae for oscillatory infinite integrals involving the Bessel functions (in Japanese). Trans. Jpn. Soc. Indus. Appl. Math. 1998;8:223–256.
  • Ogata H. A numerical integration formula based on the Bessel functions. Publ. RIMS, Kyoto Univ. 2005;41:949–970.
  • Ooura T, Mori M. Double exponential formulas for oscillatory functions over the half infinite interval. J. Comput. Appl. Math. 1991;38:353–360.
  • Mori M, Ooura T. Double exponential formulas for Fourier type integrals with a divergent integrand. In: Agarwal RP, editor. Contributions in numerical mathematics. New York (NY): World Scientific; 1993. p. 301–308.
  • Ooura T, Mori M. A robust double exponential formula for Fourier-type integrals. J. Comput. Appl. Math. 1999;112:229–241.
  • Vrahatis MN, Ragos O, Skiniotis T, et al. RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions. Comput. Phys. Commun. 1995;92:252–266.
  • Ogata H. Private communication. 2015.