255
Views
7
CrossRef citations to date
0
Altmetric
Articles

Dispersion control of helical slow-wave structure by double-negative metamaterial loading

, , &
Pages 1308-1320 | Received 23 Apr 2016, Accepted 31 May 2016, Published online: 28 Jun 2016

References

  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 1968;10:509–514.10.1070/PU1968v010n04ABEH003699
  • Engheta N, Ziolkowski RW. A positive future for double-negative metamaterials. IEEE Trans. Microwave Theory Tech. 2005;53:1535–1556.10.1109/TMTT.2005.845188
  • Caloz C, Itoh T. Novel microwave devices and structures based on the transmission-line approach of metamaterials. Vol. 1. In: Microwave Symposium Digest. IEEE MTT-S International Microwave Symposium; Philadelphia (PA); 2003. p. 195–198.
  • Grbic A, Eleftheriades GV. Experimental verification of backward-wave radiation from a negative index meta-material. J. Appl. Phys. 2002;92:5930–5934.10.1063/1.1513194
  • Qureshi F, Antoniades M, Eleftheriades GV. A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Antennas Wirel. Propag. Lett. 2005;4:333-336.10.1109/LAWP.2005.857041
  • Antoniades M, Eleftheriades GV. Compact, linear, lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas Wireless Propag. Lett. 2003;2:103–106. 10.1109/LAWP.2003.815280
  • Abdalla MAY, Phang K, Eleftheriades GV. A 0.13-micron CMOS phase shifter using tunable positive/negative refractive index transmission lines. IEEE Microwave Wireless Compon. Lett. 2005; 16:705–707.
  • Caloz C, Sanada A, Itoh T. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microwave Theory Tech. 2004;52:980–992.10.1109/TMTT.2004.823579
  • Islam R, Eleftheriades GV. Phase-agile branch-line couplers using metamaterial lines. IEEE Microwave Wireless Compon. Lett. 2004;14:340–342.10.1109/LMWC.2004.829277
  • Antoniades M, Eleftheriades GV. A broadband series power divider using zero-degree metamaterial phase-shifting lines. IEEE Microwave Wireless Compon. Lett. 2005;15:808–810.10.1109/LMWC.2005.859007
  • Galdetskiy AV. On the use of metamaterials for increasing of output power of multi-beam klystrons. In: Proceedings of IEEE International Vacuum Electronic Conference; Paris, France. 2013. p. 1–2.
  • Tan YS, Seviour R. Wave energy amplification in a metamaterial based traveling wave structure. Europhys. Lett. 2009;87:1(34005)–4(34005).
  • Starinshak DP, Wilson JD. Investigating dielectric and metamaterial effects in a terahertz travelingwave tube amplifier. Cleveland (OH): Glenn Research Center, NASA;2008. NASA/TM-2008-215059.
  • Rashidi A, Nehdad N. Metamaterial enhanced traveling-wave tubes. In: Conference Proceedings on the International Vacuum Electronics Conference; Monterey (CA); 2014 Apr. p. 199–200.
  • Sharma DK, Pathak SK. Ultra slow EM wave propagation characteristics of left-handed material loaded helical guide. Prog. Electromagn. Res. M. 2014;35:11–19.10.2528/PIERM14010102
  • Datta SK, Kumar L, Basu B. Investigation into a metamaterial supported helix slow-wave structure. In: Conference Proceedings on the International Vacuum Electronics Conference; Bangalore, India. 2011 Feb. p. 211–212.
  • Purushothaman N, Ghosh SK. Performance improvement of helix TWT using metamaterial. J. Electromagn. Waves Appl. 2013;27:890–900.10.1080/09205071.2013.792748
  • Basu BN, Jha RK, Sinha AK, et al. Electromagnetic wave propagation through an azimuthally perturbed helix. J. Appl. Phys. 1985;58:3625–3627.10.1063/1.336294
  • Varshney A, Guha R, Ghosh SK. Gain-frequency response of a helix traveling-wave tube with T-shaped dielectric support rods in a metal envelope. J. Electromagn. Waves Appl. 2016;30:566–578.10.1080/09205071.2015.1132639
  • Jain PK, Basu BN. Electromagnetic wave propagation through helical structures. In: Singh ON, Lakhtakia A, editors. Chapter 10, Electromagnetic fields in unconventional materials and structures. New Jersey (NJ): Wiley; 2000. p. 433–455.
  • Pierce JR. Traveling-wave tubes. New York (NY): D. Van Nostrand; 1950.
  • Basu BN. Electromagnetic theory and applications in beam-wave electronics. Singapore: World Scientific; 1996.10.1142/2804
  • Ziolkowski RW, Engheta N. Introduction, history, and selected topics in fundamental theories of metamaterials. In: Engheta N, Ziolkowski RW, editors. Metamaterials: physics and engineering exploration. New Jersey (NJ): Wiley-IEEE Press. 2006. p. 5–37.
  • Alu A, Engheta N. Radiation from a traveling-wave current sheet at the interface between a conventional material and material with negative permeability and permittivity. Microwave Opt. Technol. Lett. 2002;35:460–463.10.1002/(ISSN)1098-2760
  • Duan ZY, Wu B-I, Xi S, et al. Recent progress in reversed Cherenkov radiation in double-negative metamaterials. Prog. Electromagn. Res. M. 2009;90:75–87.10.2528/PIER08121604
  • Lu J, Grzegorczyk TM, Zhang Y, et al. Cerenkov radiation in materials with negative permittivity and permeability. Opt. Express. 2003;11:723–734.10.1364/OE.11.000723
  • CST Studio Suite documentation. Computer Simulation Technology (CST) GmbH. Available from: www.cst.de
  • Wislow L. Phase velocity dispersion shaping as a design parameter in traveling-wave tubes. Washington (DC): IEDM Technical Digest. 1977. p350A–350C.
  • Nagesh SR, Ghosh S, Jain PK, et al. A simple model for anisotropic loading of a vane-loaded helix for broad-band travelling-wave tubes. J. Inst. Electron. Telecommun. Eng. 1993;39:387–390.
  • Ghosh S, Jain PK, Basu BN. Analytical exploration of new tapered-geometry dielectric-supported helix slow-wave structures for broadband TWTs. In: Kong JA, editor. Electromagnetic waves monograph series: progress in electromagnetic research. Vol. 15. Cambridge: EMW Publishing; 1997. p. 63–85.
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000;84:4184–4187.10.1103/PhysRevLett.84.4184
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 1999;47:2075–2084.10.1109/22.798002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.