394
Views
16
CrossRef citations to date
0
Altmetric
Articles

A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability

, , &
Pages 447-459 | Received 06 Jul 2016, Accepted 05 Feb 2017, Published online: 20 Feb 2017

References

  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207402.10.1103/PhysRevLett.100.207402
  • Grant J, Ma Y, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett. 2011;36:1524–1526.10.1364/OL.36.001524
  • Bhattacharyya S, Ghosh S, Vaibhav Srivastava KV. Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J Appl Phys. 2013;114:094514.10.1063/1.4820569
  • Padilla WJ, Aronsson MT, Highstrete C, et al. Novel electrically resonant terahertz metamaterials. arXiv:cond-mat/0605002 v1. 2006.
  • Zhang FL, Feng SQ, Qiu KP, et al. Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett. 2015;106:091907.10.1063/1.4914502
  • Fusco VF, Cahill R, Hu W, et al. Ultra-thin tunable microwave absorber using liquid crystals. Electron Lett. 2008;44:37–38.10.1049/el:20082191
  • Shrekenhamer D, Chen W, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett. 2013;110, 177403.
  • Aydin K, Ozbay E. Capacitor-loaded split ring resnators as tunable metamaterial components. J Appl Phys. 2007;101:024911.
  • Hand T, Cummer S. Characterization of tunable metamaterial elements using MEMS switches. Antenn Wireless Propag Lett. 2007;6:401–404.10.1109/LAWP.2007.902807
  • Zhao J, Cheng Q, Chen J, et al. A tunable metamaterial absorber using varactor diodes. New J Phys. 2013;15:043049.10.1088/1367-2630/15/4/043049
  • Yoo M, Lim S. Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer. IEEE Trans Antennas Propag. 2014;62:2652–2658.
  • Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties. J Appl Phys. 2012;60:2740–2747.10.1109/TAP.2012.2194640
  • Wang B, Wang L, Wang G, et al. Frequency continuous tunable terahertz metamaterial absorber. J Lightwave Technol. 2014;32:1183–1189.10.1109/JLT.2014.2300094
  • Cheng Y-Z, Gong R-Z, Nie Y, et al. A wideband metamaterial absorber based on magnetic resonator loaded with lumped resistors. Chin Phys B 2012;21:127801.10.1088/1674-1056/21/12/127801
  • Zhao JC, Cheng YZ. Ultrabroadband microwave metamaterial absorber based on electric Srr loaded with lumped resistors. J Electron Mater. 2016;44:4269–4274.
  • Cheng YZ, Wang Y, Nie Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J Appl Phys. 2012;111:044902.
  • Huang X, Yang H, Wang D, et al. Calculations of a wideband metamaterial absorber using equivalent medium theory. J Phys D Appl Phys. 2016;49:325101.10.1088/0022-3727/49/32/325101
  • Yun H, Jianjun J, Chen M. Design of an adjustable polarization-independent and wideband electromagnetic absorber. J Appl Phys. 2016;119:105103.10.1063/1.4943593
  • Bhattacharyya S, Vaibhav Srivastava K. Triple band polarization-independent ultra-thin metamaterial absorber using ELC resonator. J Appl Phys. 2014;115:064508.10.1063/1.4865273
  • Huiqing Z, Chuanhan Z, Zhenhua L, et al. A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antenn Wireless Propag Lett. 2015;14:241–244.
  • Bhattacharya A, Bhattacharyya S, Ghosh S. An ultra-thin penta-band polarization-insensitive compact metamaterial absorber for airborne radar application. Microw Opt Technol Lett. 2015;57:2519–2524.10.1002/mop.v57.11
  • Bhattacharyya S, VaibhavSrivastava K. Dual layer polarization insensitive dual band metamaterial absorber with enhanced bandwidths. In: IEEE Asia Pacific Microwave Conference (APMC); November 4–7; Sendai, Japan; 2014. p. 816–818.
  • Bhattacharyya S, Ghosh S, VaibhavSrivastava K. Bandwidth enhanced metamaterial absorber using electric field driven LC resonator for airborne radar applications. Microw Opt Technol Lett. 2013;55:2131–2137.10.1002/mop.v55.9
  • Xiong H, Hong JS, Luo CM, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys. 2013;114:064109.10.1063/1.4818318
  • Cheng YZ, Nie Y, Wang Y, et al. Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator. J Appl Phys. 2014;115:064902.10.1063/1.4863540
  • Wu DW. A new method to measure the electromagnetic absorbers – the rectangular waveguide method measurement. Chin Phys. 1980;9:512–515.
  • Li L, Yang Y, Liang CH. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J Appl Phys. 2011;110:063702.10.1063/1.3638118
  • Zhong JP, et al. Dual-band negative permittivity metamaterial based on cross circular loop resonator with shorting stubs. IEEE Antenn Wireless Propag Lett. 2012;11:803–806.
  • Wu DW. A new method to measure the electromagnetic absorbers – the rectangular waveguide method measurement. Chin Phys. 1980;9:512–515.
  • Landy NI, et al. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Phys Rev B. 2009;79:125104.10.1103/PhysRevB.79.125104
  • Chaurasiya D, BhattacharyyaS, Ghosh S, et al. Polarisation-insensitive and wide-angle multi-layer metamaterial absorber with variable bandwidths. Electron Lett. 2015;51:1050–1052.10.1049/el.2015.1167
  • Sun J, Liu L, Dong G, et al. An extremely broadband metamaterial absorber based on destructive interference. Opti Express. 2011;19:21155–21162.
  • Xiong H, Hong JS, Luo CM, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys. 2013;114:064109.10.1063/1.4818318

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.