879
Views
14
CrossRef citations to date
0
Altmetric
Invited Review Article

Flexible perfect metamaterial absorbers for electromagnetic wave

, &
Pages 663-715 | Received 24 Jan 2017, Accepted 08 Mar 2017, Published online: 25 Apr 2017

References

  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207402–207405.
  • Aydin K, Ferry VE, Briggs RM, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun. 2011;2:517–523.
  • Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10:2342–2348.10.1021/nl9041033
  • Niesler FBP, Gansel JK, Fischbach S, et al. Metamaterial metal-based bolometers. Appl Phys Lett. 2012;100:203508–203512.10.1063/1.4714741
  • Ramahi OM, Almoneef TS, AlShareef M, et al. Metamaterial particles for electromagnetic energy harvesting. Appl Phys Lett. 2012;101:173903–173907.10.1063/1.4764054
  • Yoo YJ, Yi C, Hwang JS, et al. Experimental realization of tunable metamaterial hyper-transmitter. Sci Rep. 2016;6:33416–33422.10.1038/srep33416
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292:77–79.
  • Cheng D, Chen H, Zhang N, et al. Numerical study of a dualband negative index material with polarization independence in the middle infrared regime. J Opt Soc A. B. 2013;30:224–228.10.1364/JOSAB.30.000224
  • Ebbesen TW, Lezec HJ, Ghaemi HF, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667–669.10.1038/35570
  • Yannopapas V, Paspalakis E, Vitanov NV. Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B. 2009;80:035104–035109.10.1103/PhysRevB.80.035104
  • Gong Y, Li Z, Fu J, et al. Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Opt Exp. 2011;19:10193–10198.10.1364/OE.19.010193
  • Hedayati MK, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater. 2011;23:5410–5414.10.1002/adma.201102646
  • Su Z, Yin J, Zhao X. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Sci Rep. 2015;5:16698–16706.10.1038/srep16698
  • Liu Q, Cui Y, Gardner D, et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 2010;10:1347–1353.10.1021/nl9042104
  • Iwaszczuk K, Strikwerda AC, Fan K, et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Exp. 2011;20:635–643.
  • Iwaszczuk K, Heiselberg H, Jepsen PU. Terahertz radar cross section measurements. Opt Exp. 2010;18:26399–26408.10.1364/OE.18.026399
  • Knott EF, Schaeffer JF, Tuley MT. Radar cross section. 2nd ed. Raleigh, NC: SciTech Publishing; 2004.
  • Tao H, Bingham CM, Strikwerda AC, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B. 2008;78:241103–241106.10.1103/PhysRevB.78.241103
  • Tao H, Landy NI, Bingham CM, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Exp. 2008;16:7181–7188.10.1364/OE.16.007181
  • Yahiaoui R, Guillet JP, de Miollis F, et al. Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications. Opt Lett. 2013;38:4988–4990.10.1364/OL.38.004988
  • Yahiaoui R, Tan S, Cong L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J Appl Phys. 2015;118:083103–083108.10.1063/1.4929449
  • Huang T-Y, Tseng C-W, Yeh T-T, et al. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process. Sci Rep. 2015;5:18605–18610.
  • Imhof C, Zengerle R. Experimental verification of negative refraction in a double cross metamaterial. Appl Phys A. 2008;94:45–49.
  • Chen HT. Interference theory of metamaterial perfect absorbers. Opt Exp. 2012;20:7165–7172.10.1364/OE.20.007165
  • Grant J, Ma Y, Saha S, et al. Polarization insensitive terahertz metamaterial absorber. Opt Lett. 2011;36:1524–1526.10.1364/OL.36.001524
  • Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–213.10.1038/nmat2629
  • Wang Y, Sun T, Paudel T, et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 2012;12:440–445.10.1021/nl203763k
  • Seren HR, Zhang J, Keiser GR, et al. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials. Light Sci Appl. 2016;5:e16078.10.1038/lsa.2016.78
  • Singh PK, Korolev KA, Afsar MN, et al. Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Appl Phys Lett. 2011;99:264101–264104.10.1063/1.3672100
  • Yoo YJ, Zheng HY, Kim YJ, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl Phys Lett. 2014;105:041902–041905.10.1063/1.4885095
  • Huang L, Chowdhury DR, Ramani S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett. 2012;101:101102–101110.
  • Zhang F, Feng S, Qiu K, et al. Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett. 2015;106:091907–091911.10.1063/1.4914502
  • Liu X, Zhao Q, Lan C, et al. Isotropic Mie resonance-based metamaterial perfect absorber. Appl Phys Lett. 2013;103:031910–031912.10.1063/1.4813914
  • Hao J, Sadaune V, Burgnies L, et al. Ferroelectrics based absorbing layers. J Appl Phys. 2014;116:043520–043526.10.1063/1.4891728
  • Zhang F, Kang L, Zhao Q, et al. Magnetic and electric coupling effects of dielectric metamaterial. New J Phys. 2012;14:033031–033045.10.1088/1367-2630/14/3/033031
  • Yoo YJ, Ju S, Park SY, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci Rep. 2015;5:14018–14025.10.1038/srep14018
  • Tao H, Landy NI, Fan K, et al. International electron devices meeting. San Francisco (CA): IEEE; 2008.
  • Falco AD, Ploschner M, Krauss TF. Flexible metamaterials at visible wavelengths. New J Phys. 2010;12:113006–113012.10.1088/1367-2630/12/11/113006
  • Yang S, Liu P, Yang M, et al. From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects. Sci Rep. 2016;6:21921–21928.10.1038/srep21921
  • Shadrivov IV, Powell DA, Morrison SK, et al. Scattering of electromagnetic waves in metamaterial superlattices. Appl Phys Lett. 2007;90:201919–201921.10.1063/1.2741148
  • Choi M, Lee SH, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature. 2011;470:369–373.10.1038/nature09776
  • Liu R, Cui TJ, Huang D, et al. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys Rev E. 2007;76:026606–026613.10.1103/PhysRevE.76.026606
  • Lee SH, Choi J, Kim H-D, et al. Ultrafast refractive index control of a terahertz graphene metamaterial. Sci Rep. 2013;3:2135–2140.
  • Aksu S, Huang M, Artar A, et al. Flexible plasmonics on unconventional and nonplanar substrates. Adv Mater. 2011;23:4422–4430.10.1002/adma.201102430
  • Prodan E, Radloff C, Halas NJ, et al. A hybridization model for the plasmon response of complex nanostructures. Science. 2003;302:419–422.10.1126/science.1089171
  • Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem. 2003;75:6544–6554.10.1021/ac0346712
  • Zhang F, Liu Z, Qiu K, et al. Conductive rubber based flexible metamaterial. Appl Phys Lett. 2015;106:061906–061909.10.1063/1.4908253
  • Zhang Y, Liang L, Yang J, et al. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution. Sci Rep. 2016;6:26875.10.1038/srep26875
  • Walia S, Shah CM, Gutruf P, et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl Phys Rev. 2015;2:011303–011316.10.1063/1.4913751

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.