409
Views
20
CrossRef citations to date
0
Altmetric
Articles

High-impedance surface-based flexible broadband absorber

, , , &
Pages 1216-1231 | Received 24 Jul 2016, Accepted 02 Apr 2017, Published online: 26 Jul 2017

References

  • Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett. 2012;100:103506-1–103506-4.10.1063/1.3692178
  • Zhu B, Wang Z, Huang C, et al. Polarization insensitive metamaterial absorber with wide incident angle. Prog Electromagnet Res. 2010;101:231–239.10.2528/PIER10011110
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71:036617-1–036617-11.10.1103/PhysRevE.71.036617
  • Iwaszczuk K, Strikwerda AC, Fan K, et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express. 2012;20(1):635–643.10.1364/OE.20.000635
  • Liu Z, Bai G, Huang Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon. 2007;45:821–827.10.1016/j.carbon.2006.11.020
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207402-1–207402-4.10.1103/PhysRevLett.100.207402
  • Wang B, Koschny T, Soukoulis C M. Wide-angle and polarization-independent chiral metamaterial absorber[J]. Phys Rev B. 2009;80:033108-1–033108-4.10.1063/1.3692178
  • Tao H, Landy NI, Bingham CM, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express. 2008;16:7181–7188.10.1364/OE.16.007181
  • Zang X, Shi C, Chen L, et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci Rep. 2015;5:8901.10.1038/srep08901
  • Peng Y, Zang X,Zhu Y, et al. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Opt Express. 2015;23:2032–2039.
  • Shi C, Zang X, Wang Y, et al. A polarization-independent broadband terahertz absorber. Appl Phys Lett. 2014;105:031104.
  • Zhu W, Zhao X. Metamaterial absorber with dendritic cells at infrared frequencies. J Opt Soc Am B. 2009;26(12):2382–2385.10.1364/JOSAB.26.002382
  • Jiang ZH, Yun S, Toor F, et al. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano. 2011;5:4641–4647.10.1021/nn2004603
  • Chen S, Cheng H, Yang H, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl Phys Lett. 2011;99(25):253104-1–253104-4.10.1063/1.3670333
  • Cao T, Wei C, Simpson RE, et al. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci Rep. 2014;4:3955 (1–8).
  • Gu S, Barrett JP, Hand TH, et al. A broadband low-reflection metamaterial absorber. J Appl Phys. 2010;108(6):064913-10–064913-6.10.1063/1.3485808
  • Zhi Cheng Y, Wang Y, Nie Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J Appl Phys. 2012;111(4):044902-1–044902-4.10.1063/1.3684553
  • Chen Q, Jiang JJ, Xu XX, et al. Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface. J Electromagnet Waves Appl. 2012;26(16):2102–2111.10.1080/09205071.2012.726318
  • Sun LK, Cheng HF, Zhou YJ, et al. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt Express. 2012;20(4):4675–4680.10.1364/OE.20.004675
  • Costa F, Monorchio A. Electromagnetic absorbers based on high-impedance surfaces: from ultra-narrowband to ultra-wideband absorption. Adv Electromagnet. 2012;1(3):7–12.10.7716/aem.v1i3.22
  • Chen J, Hu Z, Wang G, et al. High-impedance surface-based broadband absorbers with interference theory. IEEE Trans Antennas Propag. 2015;63(10):4367–4374.
  • Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans Antennas Propag. 2010;58(5):1551–1558.
  • Ma B, Liu S, Bian B, et al. Novel three-band microwave metamaterial absorber. J Electromagnet Waves Appl. 2014;28(12):1478–1486.10.1080/09205071.2014.929050
  • Zhai H, Zhan C, Liu L, et al. A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability. J Electromagnet Waves Appl. 2015;29(6):774–785.10.1080/09205071.2015.1024335
  • Shen X, Yang Y, Zang Y, et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett. 2012;101(15):154102-2–154102-4.10.1063/1.4757879
  • Yao G, Ling F, Yue J, et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency. IEEE Photonics J. 2016;8(1):1–8.
  • Kim HK, Ling K, Kim K, et al. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Opt Express. 2015;23(5):5898–5906.10.1364/OE.23.005898
  • Ling K, Kim K, Lim S. Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). Opt Express. 2015;23(16):21375–21383.10.1364/OE.23.021375
  • Zhang F, Liu Z, Qiu K, et al. Conductive rubber based flexible metamaterial. Appl Phys Lett. 2015;106(6):061906-1–061906-4.10.1063/1.4908253
  • Iwaszczuk K, Strikwerda AC, Fan K, et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express. 2012;20(1):635–643.10.1364/OE.20.000635
  • Zhang Y, Liang L, Yang J, et al. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution. Sci Rep. 2016;6:27875 (1–8).
  • Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012;60(6):2740–2747.10.1109/TAP.2012.2194640
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3):036617.10.1103/PhysRevE.71.036617

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.