543
Views
10
CrossRef citations to date
0
Altmetric
Special Issue Article: Microwave Tubes and Applications

Effects on electronics exposed to high-power microwaves on the basis of a relativistic backward-wave oscillator operating on the X-band

, , , , ORCID Icon, , , , , ORCID Icon, , , , , , & show all
Pages 1875-1901 | Received 30 May 2017, Accepted 28 Jun 2017, Published online: 24 Jul 2017

References

  • Weise THGG, Jung M, Langhans D, et al. Overview of directed energy weapon developments. 12th Symposium on Electromagnetic Launch Technology; 2004; Snowbird, UT, USA.
  • Schamiloglu E. High power microwave sources and applications. Preprint of paper presented at 2004 IEEE MTTS, Fort Worth, TX.
  • Ni G, Gao B, Lu J. Research on High Power Microwave Weapons. 2005 Asia-Pacific Microwave Conference Proceedings; Suzhou, China.
  • Robert JC. High power microwaves on the future battlefield: implications for U.S. defense. A Research Report Submitted to the Faculty in Partial Fulfillment of the Graduation Requirements; 2010.
  • Min S-H, Jung GS, Park GS, et al. Mode conversion of high-power electromagnetic microwave using coaxial-beam rotating antenna in relativistic backward-wave oscillator. IEEE Trans Plasma Sci. 2010;38:1391–1397.
  • Jung HC, Min SH, Park GS, et al. Transmission of gigawatt-level microwave using a beam-rotating mode converter in a relativistic backward wave oscillator. Appl Phys Lett. 2010;96:131502.10.1063/1.3368692
  • Radasky WA, Wik MW. Overview of the threat of intentional electromagnetic interference (IEMI). 2003 IEEE International Symposium on Electromagnetic Compatibility, EMC ’03; 2003; Istanbul, Turkey.
  • Backstrom MG, Lovstrand KG. Susceptibility of electronic systems to high-power microwaves: summary of test experience. IEEE Trans Electromagn Compat. 2004;46:396–403.
  • Dagys M, Kancleris Ž, Ragulis P, et al. Investigation of susceptibility of routers to high power microwave pulse radiation. 18-th International Conference on Microwaves, Radar and Wireless Communications; 2010; Vilnius, Lithuania.
  • Holloway MA. Overview of HPM effects in electronics. Short-Course at IPMHVC, 2012-06-07. San Diego, CA.
  • Min SH, Kwona O, Sattorova M, et al. Power estimation of electromagnetic coupling effectiveness by a X-band backward wave oscillator with mode conversion. 2013 IEEE 14th International Vacuum Electronics Conference (IVEC); 2013; Paris, France.
  • Booske JH. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys Plasmas. 2008;15:055502.10.1063/1.2838240
  • Gold SH, Nusinovich GS. Review of high-power microwave source research. Rev Sci Instrum. 1997;68:3945–3974.
  • Freund HP, Neil GR. Free-electron lasers: vacuum electronic generators of coherent radiation. Proc IEEE. 1999;87:782–803.10.1109/5.757255
  • Parker RK, Abrams RH, Danly BG, et al. Vacuum electronics. IEEE Trans Microw Theory Tech. 2002;50:835–845.10.1109/22.989967
  • Siegel PH. Terahertz technology. IEEE Trans Microw Theory Tech. 2002;50:910–928.10.1109/22.989974
  • Booske JH, Dobbs RJ, Joye CD, et al. Vacuum electronic high power terahertz sources. IEEE Trans Terahertz Sci Technol. 2011;1:54–75.10.1109/TTHZ.2011.2151610
  • Tonouchi M. Cutting-edge terahertz technology. Nat Photon. 2007;1:97–105.
  • Kim DH, Jung HC, Min SH, et al. Dynamics of mode competition in a gigawatt-class magnetically insulated line oscillator. Appl Phys Lett. 2007;90:124103.10.1063/1.2714992
  • Min S-H, Kwon O, Sattorov M, et al. Characteristics of a transient axial mode from the formation of anode plasma in a gigawatt-class L-band magnetically insulated transmission line oscillator. Phys Plasmas 2016;23:063120.
  • Liu M, Fuks MI, Schamiloglu E, et al. Operation characteristics of A6 relativistic magnetron using single-stepped cavities with axial extraction. IEEE Trans Plasma Sci. 2014;42:3344–3348.10.1109/TPS.2014.2352353
  • Huang H, Feng DC, Luo GY, et al. Repetitive operation of an S-band 1-GW relativistic Klystron amplifier. IEEE Trans Plasma Sci. 2007;35:384–387.10.1109/TPS.2007.893263
  • Wu Y, Li ZH, Xie HQ, et al. An S-band high gain relativistic klystron amplifier with high phase stability. Phys Plasmas. 2014;21:113107.10.1063/1.4901811
  • Zaitsev NI, Ginzburg NS, Ilyakov EV, et al. X-band high-efficiency relativistic gyrotron. IEEE Trans Plasma Sci. 2002;30:840–845.10.1109/TPS.2002.801555
  • Glyavin MY, Luchinin AG, Golubiatnikov GY. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys Rev Lett. 2008;100:015101.10.1103/PhysRevLett.100.015101
  • Hidaka Y, Choi E, Mastovsky I, et al. Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses. Phys Rev Lett. 2008;100:035003.10.1103/PhysRevLett.100.035003
  • Hidaka Y, Choi E, Mastovsky I, et al. Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron. Phys Plasmas. 2009;16:055702.10.1063/1.3083218
  • Zaitsev NI, Pankratova TB, Petelin MI, et al. Millimeter and submillimeter-wave gyrotrons. Radio Eng Electron Phys. 1974;19:103.
  • Zaitsev NI, Ginzburg NS, Ilyakov EV, et al. X-band high efficiency relativistic gyrotron. IEEE Trans. Plasma Sci. 2002;30(3):840.10.1109/TPS.2002.801555
  • Shin Y-M, Baig A, Barnett LR, et al. System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier. IEEE Trans Electron Devices. 2012;59:234–240.10.1109/TED.2011.2173575
  • Benford J, Swegle JA, Schamiloglu E. High power microwaves. Boca Raton (FL): CRC Press Taylor & Francis Group; 2007.
  • Tsimring SE. Electron beams and microwave vacuum electronics. Hoboken (NJ): Wiley; 2007.
  • Kovalev NF, Petelin MI, Raizer MD, et al. Generation of powerful electromagnetic radiation pulses by a beam of relativistic electrons. JETP Lett. 1973;18:138–140.
  • Carmel Y, Ivers J, Kribel RE, et al. Intense coherent cherenkov radiation due to the interaction of a relativistic electron beam with a slow-wave structure. Phys Rev Lett. 1974;33:1278–1282.10.1103/PhysRevLett.33.1278
  • Aleksandrov AF, Galuzo SY, Kanavets VI, et al. Cerenkov radiation from a relativistic electron beam in a corrugated waveguide. Sov Phys Tech Phys. 1980;25:1394–1398.
  • Bondar YF, Zavorotnyi SI, Ipatov AL, et al. Measurements of RF emission from a carcinotron with a relativistic electron beam. Sov J Plasma Phys. 1983;9:223.
  • Levush B, Antonsen TM, Bromborsky W-R, et al. Theory of relativistic backward-wave oscillators with end reflections. IEEE Trans Plasma Sci. 1992;20:263–280.
  • Felsenthal P, Proud JM. Nanosecond-pulse breakdown in gases. Phys Rev Lett. 1965;139:1796–1804.
  • Yaghjian AD. Efficient computation of antenna coupling and fields within the near-field region. IEEE Trans Antennas Propag. 1982;30:113–128.10.1109/TAP.1982.1142752
  • Anderson D, Lisak M. Breakdown in air‐filled microwave waveguides during pulsed operation. J Appl Phys. 1984;56:1414–1419.10.1063/1.334140
  • Nahman NS, Kanda M, Larsen EB, et al. Methodology for standard electromagnetic field measurements. IEEE Trans Instrum Measure. 1985;34:490–503.
  • Kanda M, Orr RD. Near-field gain of a horn and an open-ended waveguide: comparison between theory and experiment. IEEE Trans Antennas Propag. 1987;35:33–40.10.1109/TAP.1987.1143963
  • Baum CE. Focused aperture antennas. Sensor and Simulation Note 306. Air Force Weapons Laboratory; 1987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.