334
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Multilevel fast multipole algorithm for fields

, ORCID Icon, , & ORCID Icon
Pages 1261-1274 | Received 07 Sep 2017, Accepted 18 Jan 2018, Published online: 01 Feb 2018

References

  • Song JM , Chew WC . Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw Opt Tech Lett. 1995;10:14–19.10.1002/(ISSN)1098-2760
  • Song J , Lu C-C , Chew WC . Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag. 1997;45(10):1488–1493.10.1109/8.633855
  • Donepudi KC , Jin J-M , Chew WC . A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies. IEEE Trans Antennas Propag. 2003;51(10):2814–2821.10.1109/TAP.2003.817979
  • Chew WC , Jin J-M , Michielssen E , et al . Fast and efficient algorithms in computational electromagnetics. Boston (MA): Artech House; 2001.
  • Harrington RF . Field computation by moment method. New York (NY): IEEE Press; 1993.10.1109/9780470544631
  • Ergül Ö , Gürel L . Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems. IEEE Trans Antennas Propag. 2008;56:2335–2345.10.1109/TAP.2008.926757
  • Ergül Ö , Gürel L . A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm. IEEE Trans Antennas Propag. 2009;57:1740–1750.10.1109/TAP.2009.2019913
  • Araújo MG , Taboada JM , Obelleiro F , et al . Supercomputer aware approach for the solution of challenging electromagnetic problems. Prog Electromagn Res. 2010;101:241–256.10.2528/PIER09121007
  • Taboada JM , Araújo MG , Bértolo JM , et al . MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics. Prog Electromagn Res. 2010;105:15–30.10.2528/PIER10041603
  • Ergül Ö , Gürel L . Rigorous solutions of electromagnetic problems involving hundreds of millions of unknowns. IEEE Antennas Propag Mag. 2011;53(1):18–27.10.1109/MAP.2011.5773562
  • Taboada JM , Araújo MG , Obelleiro F , et al . MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics (INVITED PAPER). Proc IEEE. 2013;101(2):350–363.10.1109/JPROC.2012.2194269
  • Myroshnychenko V , Rodriguez-Fernandez J , Pastoriza-Santos I , et al . Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008;37(9):1792–1805.10.1039/b711486a
  • Rivero J , Taboada JM , Landesa L , et al . Surface integral equation formulation for the analysis of left-handed metamaterials. Opt Express. 2010;18:15876–15886.10.1364/OE.18.015876
  • Gallinet B , Martin OJF . Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation. Photonic Nanostruct. 2010;8:278–284.10.1016/j.photonics.2010.05.003
  • Gallinet B , Kern AM , Martin OJF . Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. J Opt Soc Am A. 2010;27:2261–2271.10.1364/JOSAA.27.002261
  • Taboada JM , Rivero J , Obelleiro F , et al . Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J Opt Soc Am A. 2011;28:1341–1348.10.1364/JOSAA.28.001341
  • Gallinet B , Siegfried T , Sigg H , et al . Plasmonic radiance: probing structure at the Ångström scale with visible light. Nano Lett. 2013;13(2):497–503.10.1021/nl303896d
  • Solís DM , Taboada JM , Obelleiro F , et al . Toward ultimate nanoplasmonics modeling. ACS Nano. 2014;8(8):7559–7570.10.1021/nn5037703
  • Solís DM , Araújo MG , Landesa L , et al . MLFMA-MoM for solving the scattering of densely packed plasmonic nanoparticle assemblies. IEEE Phot J. 2015;7(3):4800709.
  • Yilmaz A , Karaosmanoğl B , Ergül Ö . Computational electromagnetic analysis of deformed nanowires using the multilevel fast multipole algorithm. Sci Rep. 2015;5:8469.10.1038/srep08469
  • Farrokhtakin E , Rodríguez-Fernández D , Mattoli V , et al . Radial growth of plasmon coupled gold nanowires on colloidal templates. J Colloid Interface Sci. 2015;449:87–91.10.1016/j.jcis.2014.12.018
  • Fernández-López C , Polavarapu L , Solís DM , et al . Gold nanorods-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling and SERS properties. ACS Appl Mater Interfaces. 2015;7(23):12530–12538.10.1021/am5087209
  • Shiohara A , Novikov SM , Solís DM , et al . Plasmon modes and hot spots in gold nanostar−satellite clusters. J Phys Chem C. 2015;119(20):10836–10843.10.1021/jp509953f
  • Hamon C , Novikov S , Scarabelli L , et al . Collective plasmonic properties in few-layer gold nanorod supercrystals. ACS Photon. 2015;2(10):1482–1488.10.1021/acsphotonics.5b00369
  • Gallinet B , Butet J , Martin OJF . Numerical methods for nanophotonics: standard problems and future challenges. Laser Photon Rev. 2015;9(6):577–603.10.1002/lpor.201500122
  • Sánchez-Iglesias A , Barroso J , Solís DM , et al . Plasmonic substrates comprising gold nanostars efficiently regenerate cofactor molecules. J Mater Chem A. 2016;4:7045–7052.10.1039/C6TA01770C
  • Solís DM , Taboada JM , Obelleiro F , et al . Optimization of nanoparticle-based SERS substrates through large-scale realistic simulations. ACS Photon. 2017;4(2):329–337.10.1021/acsphotonics.6b00786
  • Velamparambil S , Chew WC , Song J . 10 million unknowns: is it that big? IEEE Antennas Propag Mag. 2003;45(2):43–58.10.1109/MAP.2003.1203119
  • Tzoulis A , Eibert TF . Efficient electromagnetic near-field computation by the multilevel fast multipole method employing mixed near-field/far-field translations. IEEE Antennas Wirel Propag Lett. 2005;4:449–452.10.1109/LAWP.2005.860195
  • Novotny L , Hecht B . Principles of nano-optics. Cambridge: Cambridge University Press; 2006.10.1017/CBO9780511813535
  • Schlücker S . Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53:4756–4795.10.1002/anie.201205748
  • Bohren CF , Huffman DR . Absorption and scattering of light by small particles. New York (NY): John Wiley; 1983.
  • Ishimaru A . Electromagnetic wave propagation, radiation and scattering. New Jersey (NJ): Prentice-Hall; 1991.
  • Gumerov A , Duraiswami R , Borovikov EA . Data structures, optimal choice of parameters, and complexity results for generalized multilevel fast multipole methods in d dimensions. Baltimore, MD : Computer Science Department, University of Maryland; 2003 (Tech. Rep. CS-TR-4458 UMIACS; UMIACS-TR-2003-28).
  • Sylvand G . La méthode multipôle rapide en électromagnétisme: performances, parallélisation, applications [Ph.D. dissertation]. Paris: ENPC Paris; 2002.
  • Haes AJ , van Duyne RP . A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem. 2004;379:920–930.10.1007/s00216-004-2708-9
  • Rao SM , Wilton DR , Glisson AW . Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag. 1982;30(3):409–418.10.1109/TAP.1982.1142818
  • Palik ED . Handbook of optical constants of solids. New York (NY): Academic Press; 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.