241
Views
0
CrossRef citations to date
0
Altmetric
Invited Review Article

Computer simulations of frequency- and phase-locking of cavity magnetrons

Pages 1501-1518 | Received 07 Dec 2017, Accepted 01 Mar 2018, Published online: 26 Mar 2018

References

  • Bostick W, Everhart E, Labitt M. Parallel operation of magnetrons. Research Laboratory of Electronics, Massachusetts Institute of Technology; 1946 Sep 14. (Technical Report no. 14).
  • Slater JC. The phasing of magnetrons. Research Laboratory of Electronics, Massachusetts Institute of Technology; 1947 Apr 3. (Technical Report no. 35).
  • Kato K, Weatherall J. Cascaded relativistic magnetron. United States Patent, Patent Number: 5,162,698, Date of Patent: 1992 Nov 10.
  • Andreev AD. Axial strapping of a multi-core (cascaded) magnetron. United States Patent, Patent No.: US 9,711,315 B2, Date of Patent: 2017 Jul 18.
  • Benford J, Smith RR, Sze H, et al. Phase-locking of relativistic magnetrons. In: Microwave Particle Beam Sources Propagation, Proceedings of SPIE. Vol. 873; 1988. p. 23–27.10.1117/12.965077
  • Levine JS, Benford JN, Sze HM, et al. Strongly coupled relativistic magnetrons for phase-locked arrays. In: Microwave and Particle Beam Sources and Directed Energy Applications, Proceedings of SPIE. Vol. 1061; 1989. p. 144–156.
  • Woo W, Benford J, Fittinghoff D, et al. Phase-locking of high-power microwave oscillators. J Appl Phys. 1989;65(2):861–866.10.1063/1.343079
  • Benford J, Sze H, Woo W, et al. Phase locking of relativistic magnetrons. Phys Rev Lett. 1989;62(8):969–971.10.1103/PhysRevLett.62.969
  • Levine JS, Benford JN, Harteneck BD, et al. Initial operation of a compact phase-locked module of relativistic magnetrons. In: Intense Microwave and Particle Beams, Proceedings of SPIE. Vol. 1226; 1990. p. 44–49.10.1117/12.18543
  • Levine JS, Aiello N, Benford JN. Design of a compact phase-locked module of relativistic magnetrons. In: Intense Microwave and Particle Beams, Proceedings of SPIE. Vol. 1226; 1990. p. 60–71.10.1117/12.18545
  • Levine JS, Benford J, Courtney R, et al. Operational characteristics of a phase-locked module of relativistic magnetron. In: Intense Microwave and Particle Beams II, Proceedings of SPIE. Vol. 1407; 1991. p. 74–82.10.1117/12.43482
  • Chen HC, Stark RA, Uhm HS. Phase-locking simulation of dual magnetrons. In: Intense Microwave and Particle Beams II, Proceedings of SPIE. Vol. 1407; 1991. p. 139–146.10.1117/12.43489
  • Levine JS, Aiello N, Benford J, et al. Design and operation of a module of phase-locked relativistic magnetrons. J Appl Phys. 1991;70(5):2838–2848.10.1063/1.349347
  • Sze H, Smith RR, Benford J, et al. Phase –locking of strongly coupled relativistic magnetrons. IEEE Trans Electromagn Compat. 1992;34(3):235–241.10.1109/15.155835
  • Sulakshin AS, Filipenko NM, Kanaev GG, et al. The coherent regimes of phase-locked relativistic magnetron operation. In: Intense Microwave Pulses III, Proceedings of SPIE. Vol. 2557; 1995. p. 492–498.10.1117/12.218545
  • Kanaev GG, Filipenko NM, Furman EG, et al. Synchronization of linear induction accelerators operating with relativistic magnetrons. In: Intense Microwave Pulses III, Proceedings of SPIE. Vol. 2557; 1995. p. 499–503.10.1117/12.218546
  • Novikov SS, Sulakshin SA, Maidanovskii SA. Receiving superhigh power in a system of strongly coupled microwave oscillators. In: Intense Microwave Pulses III, Proceedings of SPIE. Vol. 2557; 1995. p. 523–530.10.1117/12.218579
  • Sulakshin AS, Filipenko NM, Fomenko GP, et al. System of strongly coupled relativistic magnetrons. In: Intense Microwave Pulses V, Proceedings of SPIE. Vol. 3158; 1997. p. 271–277.10.1117/12.279436
  • Chen SC, Bekefi G. Relativistic magnetron research. In: Microwave and Particle Beam Sources and Propagation, Proceedings of SPIE. Vol. 0873; 1988. p. 18–22.10.1117/12.965076
  • Chen SC, Bekefi G, Temkin R, et al. Proposed injection locking of a long pulse relativistic magnetron. In: Microwave and Particle Beam Sources and Directed Energy Concepts, Proceedings of SPIE. Vol. 1061; 1989. p. 157–160.
  • Walsh JE, Johnston GL, Davidson RC, et al. Theory of phase-locked regenerative oscillators with nonlinear frequency-shift effects. In: Microwave and Particle Beam Sources and Directed Energy Concepts, Proceedings of SPIE. Vol. 1061; 1989. p. 161–169.
  • Chen SC. Growth and frequency pushing effects in relativistic magnetron phase-locking. IEEE Trans Plasma Sci. 1990;18(3):570–576.10.1109/27.55928
  • Chen SC, Bekefi G, Temkin RJ. Operation of a long-pulse relativistic magnetron in a phase-locking system. In: Intense Microwave and Particle Beams, Proceedings of SPIE. Vol. 1226; 1990. p. 36–43.10.1117/12.18542
  • Chen SC. Growth and frequency-pushing effects in relativistic magnetron phase-locking. In: Intense Microwave and Particle Beams, Proceedings of SPIE. Vol. 1226; 1990. p. 50–59.10.1117/12.18544
  • Johnston GL, Chen SC, Bekefi G, et al. Models of driven relativistic magnetrons with nonlinear frequency-shift and growth-saturation effects. In: Intense Microwave and Particle Beams, Proceedings of SPIE. Vol. 1226; 1990. p. 108–116.10.1117/12.18549
  • Chen SC, Bekefi G, Temkin RJ. Injection locking of a long-pulse relativistic magnetron. In: Particle Accelerators Conference; 1991. p. 751–753.
  • Chen SC, Bekefi G, Temkin RJ. Injection locking of a long-pulse relativistic magnetron. In: Intense Microwave and Particle Beams II, Proceedings of SPIE. Vol. 1407; 1991. p. 67–73.10.1117/12.43481
  • Johnston GL, Chen SC, Davidson RC, et al. Models of driven and mutually coupled relativistic magnetrons with nonlinear frequency-shift and growth-saturation effects. In: Intense Microwave and Particle Beams II, Proceedings of SPIE. Vol. 1407; 1991. p. 92–99.10.1117/12.43484
  • Chen SC. Comparison of relativistic magnetron oscillator models for phase-locking studies. In: Intense Microwave and Particle Beams II, Proceedings of SPIE. Vol. 1407; 1991. p. 100–104.10.1117/12.43485
  • Chen C, Chan HW, Davidson RC. Parametric simulation studies and injection phase locking of relativistic magnetrons. In: Intense Microwave and Particle Beams II, Proceedings of SPIE. Vol. 1407; 1991. p. 105–112.10.1117/12.43486
  • Treado TA, Brown PD, Bolton RA, et al. High-energy, high-efficiency, phase locked HPM magnetrons for an array. In: Intense Microwave and Particle Beams III, Proceedings of SPIE. Vol. 1629; 1992. p. 108–118.10.1117/12.137113
  • Treado TA, Bolton RA, Hansen TA, et al. High-power, high efficiency, injection-locked, secondary-emission magnetron. IEEE Trans Plasma Sci. 1992;20(3):351–359.10.1109/27.142836
  • Treado TA, Brown PD, Aiguier D. New experimental results at long pulse and high repetition rate from Varian’s phase-locked magnetron array program. In: Intense Microwave Pulses, Proceedings of SPIE. Vol. 1872; 1993. p. 241–251.
  • Treado TA, Brown PD, Aiguier DJ. Phase locking of two long-pulse, high-power magnetrons. IEEE Trans Plasma Sci. 1994;22(5):616–625.10.1109/27.338275
  • Treado TA, Brown PD, Antosh C. Compact, high-average-power, injection-locked magnetron. In: Intense Microwave Pulses II, Proceedings of SPIE. Vol. 2154; 1994. p. 228–237.10.1117/12.175749
  • Kato KG, Brown KW, Crouch DD, et al. Peer-peer phase-locking of two L-band industrial heating magnetrons. In: Proceedings of the Fifth IEEE International Vacuum Electronics Conference IVEC 2004, 2004 Apr 27–29; Monterey (CA); p. 230–231.
  • Chen X, Esterson M, Lindsay PA. Computer modeling of phase locking in magnetrons. In: Intense Microwave Pulses IV, Proceedings of SPIE. Vol. 2843; 1996. p. 47–56.10.1117/12.255418
  • Pengvanich P, Neculaes VB, Lau YY, et al. Modeling and experimental studies of magnetron injection locking. J Appl Phys. 2005;98(11):114903(6).10.1063/1.2132513
  • White WM, Gilgenbach RM, Jones MC, et al. Radio frequency priming of a long-pulse relativistic magnetron. IEEE Trans Plasma Sci. 2006;34(3):627–634.10.1109/TPS.2006.875829
  • Pengvanich P, Lau YY, Luginsland JW, et al. Effects of frequency chirp on magnetron injection locking. Phys Plasmas. 2008;15(7):073110(1–6).10.1063/1.2956332
  • Osepchuk JM, Ruden TE. Magnetrons. In: Encyclopedia of RF and Microwave Engineering. Vol. 3, Chang K, editor. John Wiley & Sons; 2005. p. 2482–2514.
  • David EE. RF phase control in pulsed magnetrons. In: Proceedings of the IRE; 1952 Jun; p. 669–685.10.1109/JRPROC.1952.274060
  • David EE. Phasing by RF signals. In: Crossed-field Microwave Device. Vol. II, Okress E, editor. Academic Press; 1961. p. 375–399.10.1016/B978-0-12-395554-8.50031-0
  • Kasatkin LV. Pulsed generators under conditions of phase locking by a pulsed coherent signal (coherent magnetrons). Radioelectron Commun Syst. 2006;49(4):26–31.
  • Cuccia CL. Frequency-locked, grid-controlled magnetron. RCA Rev. 1960;21(1):75–93.
  • Cuccia CL. Grid control of magnetrons. In: Crossed-Field Microwave Devices. Vol. II, Okress E, editor. Academic Press; 1961. p. 83–91.
  • Fuks M, Schamiloglu E. Rapid start of oscillations in a magnetron with a “transparent” cathode. Phys Rev Lett. 2005 Nov 11;95:205101(1–4).
  • Overett T, Remsen DB, Bowles E, et al. Phase locked magnetrons as accelerator RF sources. In: Proceedings of the 12th IEEE Particle Accelerator Conference (PAC1987): Accelerator Engineering and Technology; 1987 Mar 16–19. Washington, DC; p. 1464–1465.
  • Gilmour AS, Farney GK, Gray BR. RF tubes for space-based accelerators. IEEE Trans Electron Dev. 1991 Oct;38(10):2190–2204.10.1109/16.88499
  • Churyumov GI, Gritsunov AV, Frolova TI, et al. Theoretical and experimental investigation of frequency tuning and lock modes of magnetrons. In: Proceedings of the 16th International Crimean Conference “Microwave & Telecommunication Technology (CriMiCo’2006); Sevastopol, Crimea, Ukraine; 2006 Sept 11–15; p. 296–297.
  • Neronskiy LB, Mikhaylov VF, Bragin BV. Microwave devices for distant probe of Earth surface and atmosphere. Radio-locators with synthetic aperture of an antenna. Saint-Petersburg: NERSAR; 1999.
  • Mitani T, Shinohara N, Hashimoto K, et al. Study on high-efficiency and low-noise wireless power transmission for solar power station/satellite. Electr Eng Jpn. 2010;173(2):21–32.
  • Shinohara N, Matsumoto H. Research on magnetron phased array with mutual injection locking for Space Solar Power Satellite/Station. In: Proceedings of the 2nd Joint International Conference on ‘Sustainable Energy and Environment (SEE 2006)’; Bangkok, Thailand; 2006 Nov 21–23. p. # A-006(O).
  • Wang H, Davis K, Rimmer R, et al. Use of an injection locked magnetrons to drive a superconducting RF cavity. In: Proceedings of the International Particle Accelerators Conference; Kyoto, Japan; 2010. p. 4026–4028.
  • Tahir I, Dexter A, Carter R. Noise performance of frequency- and phase-locked CW magnetrons operated as current-controlled oscillators. IEEE Trans Electron Dev. 2005;52(9):2096–2103.10.1109/TED.2005.854276
  • Tahir I, Dexter A, Carter R. Frequency and phase modulation performance of an injection-locked CW magnetron. IEEE Trans Electron Dev. 2006;53(7):1721–1729.10.1109/TED.2006.876268
  • Dexter A, Burt G, Carter RG, et al. First demonstration and performance of an injection locked continuous wave magnetron to phase control of a superconducting cavity. Phys Rev Special Topics – Accelerators Beams. 2011;14(3):032001(17).
  • van der Pol B. The nonlinear theory of electric oscillations. Proc Inst Radio Eng. 1934 Sep;22(9):1051–1086.
  • van der Pol B. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive Triode.). Philos Mag. Series 7. 1927 Jan;3(13):65–80.
  • Wenkai X, Shenggang L. Phase and frequency locking of microwave and millimeter wave power combining. J Electron. 1994;11(4):361–368.
  • Adler R. A study of locking phenomena in oscillators. Proc IRE Waves Electron. 1946 Jun;34(6):351–357.
  • Adler R. A study of locking phenomena in oscillators. Proc IEEE. 1973;61(10):1380–1385.10.1109/PROC.1973.9292
  • Wynn AP, Blank DE, Campbell PS, et al. Fifth IEEE International Vacuum Electronics Conference IVEC 2004, April 27–29; Monterey (CA): IEEE Press; 2004. p. 164–165.
  • Andreev AD, Hendricks kJ. Particle-in-Cell (PIC) simulation of CW industrial heating magnetron. J Microwave Power Electromagn Energy. 2010;44(2):114–124.10.1080/08327823.2010.11689779
  • Smith RS III, Ludeking LD, Hobbs D, et al. Fifth IEEE International Vacuum Electronics Conference IVEC 2004 April, 27–29. Monterey (CA): IEEE Press; 2004. p. 166–167.
  • Jung SS, Jin YS, Lee HS, et al. Three-Dimensional Particle-in-Cell Simulations of a Strapped Magnetron Oscillator. J Korean Phys Soc. 2004;44(5):1250–1255.
  • Andreev AD, Hendricks kJ. Multi-cavity magnetron with the “Rodded” quasi-metamaterial cathode. IEEE Trans Plasma Sci. 2013;41(2):400–407.
  • Andreev AD, Hendricks kJ. ICEPIC simulations of a strapped non-relativistic high-power UHF magnetron with a transparent cathode operating in the explosive electron emission mode. IEEE Trans Plasma Sci. 2012;40(10):2535–2547.10.1109/TPS.2012.2183149
  • Andreev AD, Hendricks kJ. Metamaterial-like cathodes in multicavity magnetrons. IEEE Trans Plasma Sci. 2012;40(9):2267–2273.10.1109/TPS.2012.2206615
  • Andreev AD, Hendricks kJ. ICEPIC simulations of a strapped non-relativistic high-power CW UHF magnetron with a solid cathode operating in the space-charge limited regime. IEEE Trans Plasma Sci. 2012;40(6):1551–1562.10.1109/TPS.2011.2177997
  • Ginzburg NS, Cross AW, Golovanov AA, et al. Generation of electromagnetic fields of extremely high intensity by coherent summation of Cherenkov superradiance pulses. Phys Rev Lett. 2015 Sep 11;115:114802(1–5).
  • HФ Aлeкceeв, ДE Maляpoв, Пoлyчeниe мoщныx кoлeбaний мaгнeтpoнoм в caнтимeтpoвoм диaпaзoнe вoлн. Жypнaл Texничecкoй Физики. T. X, Bып. 15, 28 Aпpeля 1940, cтp. 1297–1300.
  • Alekseev NF, Malairov DD. Generation of high-power oscillations with a magnetron in the centimeter band. In: Bensen, IB, translator. Proceedings of the I.R.E., 1944 Mar; p. 136–139.
  • Mouromtseff IE. Development of electronic tubes. Proc IRE. 1945 Apr;33:223–233.10.1109/JRPROC.1945.233557
  • Andreev AD, Hendricks KJ. First multi-cavity magnetrons were built in NII-9, Leningrad during the spring of 1937. PIC simulations of the first 4-cavity S-band CW magnetron. In: An International Conference on the Origins and Evolution of the Cavity Magnetrons, CAVMAG 2010, Proceedings; 2010 Apr 19–20; Bournemouth University, England; 2010; p. 71–75.10.1109/CAVMAG.2010.5565560
  • Blanchard Y, Galati G.e, van Genderen P. The cavity magnetron: not just a british invention [Historical Corner]. IEEE Antennas Propag Mag. 2013 Oct;55(5):244–254.10.1109/MAP.2013.6735528
  • Cuccia CL, Wallmark JT. A frequency locked grid-controlled magnetron for amplitude and frequency modulation. IRE Trans Electron Dev. 1956Apr; 3(2):108–109.10.1109/T-ED.1956.14114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.