401
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Ultra-wideband microwave absorber based on uncharged graphene layers

&
Pages 1950-1960 | Received 11 Dec 2017, Accepted 20 May 2018, Published online: 25 Jun 2018

References

  • Yang J, Shen Z. A thin and broadband absorber using double-square loops. IEEE Antennas Wirel Propag Lett. 2007;6:388–391. doi: 10.1109/LAWP.2007.903496
  • Shang Y, Shen Z, Xiao S. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag. 2013;61:6022–6029. doi: 10.1109/TAP.2013.2280836
  • Li S, Gao J, Cao X, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. J Appl Phys. 2014;116:043710.
  • Yoo M, Lim S. Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer. IEEE Trans Antennas Propag. 2014;62:2652–2658. doi: 10.1109/TAP.2014.2308511
  • Chen Q, Jiang JJ, Xu XX, et al. Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface. J Electromagn Waves Appl. 2012;26:2102–2111. doi: 10.1080/09205071.2012.726318
  • Li SJ, Gao J, Cao XY, et al. Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber. Appl Phys Lett. 2015;106:181103.
  • Xiong H, Hong JS, Luo CM, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys. 2013;114:064109.
  • Li SJ, Gao J, Cao XY, et al. Polarization-insensitive and thin stereometamaterial with broadband angular absorption for the oblique incidence. Appl Phys A. 2015;119:371–378.
  • Sun J, Liu L, Dong G, et al. An extremely broad band metamaterial absorber based on destructive interference. Opt Express. 2011;19:21155–21162. doi: 10.1364/OE.19.021155
  • Li S, Gao J, Cao X, et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Opt Express. 2015;23:3523–3533. doi: 10.1364/OE.23.003523
  • Xu YL, Wei XC, Li EP. Three-dimensional tunable frequency selective surface based on vertical graphene micro-ribbons. J Electromagn Waves Appl. 2015;29:2130–2138. doi: 10.1080/09205071.2015.1065770
  • Deng G, Xia T, Yang J, et al. A graphene-based broadband terahertz metamaterial modulator. J Electromagn Waves Appl. 2016;31:2016–2024. doi: 10.1080/09205071.2016.1277960
  • Lee CC, Suzuki S, Xie W, et al. Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt Express. 2012;20:5264–5269. doi: 10.1364/OE.20.005264
  • Liatser I, Kremers C, Cabellos-Aparicio A, et al. Graphene-based nano-patch antenna for terahertz radiation. Phot Nano Fund Appl.. 2012;10:353–358. doi: 10.1016/j.photonics.2012.05.011
  • Aidi M, Hajji M, Ben Ammar A, et al. Graphene nanoribbon antenna modeling based on MoM-GEC method for electromagnetic nanocommunications in the terahertz range. J Electromagn Waves Appl. 2016;30:1032–1048. doi: 10.1080/09205071.2016.1168752
  • Kim JT, Choi SY. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt Express. 2011;19:24557–24562. doi: 10.1364/OE.19.024557
  • Baqir MA, Choudhury PK. Graphene-based slab waveguide for slow-light propagation and mode filtering. J Electromagn Waves Appl. 2016;31:2055–2063. doi: 10.1080/09205071.2017.1280421
  • Yi D, Wei XC, Xu YL. Tunable microwave absorber based on patterned graphene. IEEE Trans Microw Theory Tech. 2017;65:2819–2826. doi: 10.1109/TMTT.2017.2678501
  • Xu B, Gu C, Li Z, et al. A novel absorber with tunable bandwidth based on graphene. IEEE Antennas Wirel Propag Lett. 2014;13:822–825. doi: 10.1109/LAWP.2013.2297733
  • Panwar R, Puthucheri S, Singh D, et al. Design of ferrite-graphene-based thin broadband radar wave absorber for stealth application. IEEE Trans Magn. 2015;51:2802804. doi: 10.1109/TMAG.2015.2454431
  • Huang X, Pan K, Hu Z. Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers. Sci Rep. 2016;6:38197. doi: 10.1038/srep38197
  • Placha MO, Salski B, Janczak D, et al. A broadband absorber with a resistive pattern made of ink with graphene nano-platelets. IEEE Trans Antennas Propag. 2015;63:565–572. doi: 10.1109/TAP.2014.2379932
  • Huang X, Hu Z, Liu P. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction. AIP Adv. 2014;4:117103.
  • Mousavi SH, Kholmanov I, Alici KB, et al. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett. 2013;13:1111–1117. doi: 10.1021/nl304476b
  • Yao Y, Kats MA, Genevet P, et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 2013;13:1257–1264. doi: 10.1021/nl3047943
  • Hanson GW. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys. 2008;103:064302. doi: 10.1063/1.2891452
  • Chen M, Sun W, Cai J, et al. Frequency-tunable terahertz absorbers based on graphene metasurface. Opt Commun. 2017;382:144–150. doi: 10.1016/j.optcom.2016.07.077
  • Zhang Y, Feng Y, Zhu B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Express. 2014;22:22743–22752. doi: 10.1364/OE.22.022743
  • Yang J, Kong F, Li K. Broad tunable nanoantenna based on graphene log-periodic toothed structure. Plasmonics. 2016;11:981–986. doi: 10.1007/s11468-015-0132-y
  • Vakil A, Engheta N. Transformation optics using graphene. Science. 2011;332:1291–1294. doi: 10.1126/science.1202691
  • Vasic B, Gajic R. Tunable Fabry–Perot resonators with embedded graphene from terahertz to near-infrared frequencies. Opt Lett. 2014;39:6253–6256. doi: 10.1364/OL.39.006253
  • Moharam MG, Grann EB, Pommet DA, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A. 1995;12:1068–1076. doi: 10.1364/JOSAA.12.001068
  • Li L. Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A. 1996;13:1870–1876. doi: 10.1364/JOSAA.13.001870
  • Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces. Phys Rev B. 2012;86:195408. doi: 10.1103/PhysRevB.86.195408
  • Li SJ, Cao XY, Gao J, et al. Analysis and design of three Layers perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Trans Antennas Propag. 2015;63:5155–5160. doi: 10.1109/TAP.2015.2475634

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.