111
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Near-zero-index nonlinear surface polaritons controlled by the surface conductivity of graphene

Pages 1989-2001 | Received 09 Jan 2018, Accepted 24 May 2018, Published online: 20 Jun 2018

References

  • Vesseur EJR, Coenen T, Caglayan H, et al. Experimental verification of n = 0 structures for visible light. Phys Rev Lett. 2013;110(1):013902-1–013902-5.
  • Özgün E, Ozbay E, Caglayan H. Tunable zero-index photonic crystal waveguide for two-qubit entanglement detection. ACS Photonics. 2016;3:2129–2133.
  • Sokhoyan R, Atwater HA. Quantum optical properties of a dipole emitter coupled to an ϵ-near-zero nanoscale waveguide. Opt Express. 2013;21(26):32279–32290.
  • Moitra P, Yang Y, Anderson Z, et al. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics. 2013;7(10):791–795.
  • Maas R, Parsons J, Engheta N, et al. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics. 2013;7:907–912.
  • Kita S, Li Y, Camayd-Muñoz P, et al. On-chip all-dielectric fabrication-tolerant zero-index metamaterials. Opt Express. 2017;25(7):8326–8334.
  • Mahmoud AM, Liberal I, Engheta N. Dipole–dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling. Opt Mater Express. 2017;7(2):415–424.
  • Liberal I, Engheta N. Near-zero refractive index photonics. Nat Photonics. 2017;11:149–158.
  • Zayats AV, Smolyaninov II, Maradudin AA. Nano-optics of surface plasmon polaritons. Phys Rep. 2005;408:131–314.
  • Barnes WL. Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A: Pure Appl Opt. 2006;8:S87–S93.
  • Mart´ın-Becerra D, Temnov VV, Thomay T, et al. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Phys Rev B. 2012;86:035118-1–035118-7.
  • Anderson NR, Camley RE. Attenuated total reflection study of bulk and surface polaritons in antiferromagnets and hexagonal ferrites: propagation at arbitrary angles. J Appl Phys. 2013;113:013904-1–013904-12.
  • Tuz VR, Fesenko VI, Fedorin IV, et al. Coexistence of bulk and surface polaritons in a magnetic-semiconductor superlattice influenced by a transverse magnetic field. J Appl Phys. 2017;121:103102-1–103102-25.
  • Groza AD. Above-light-line nonlinear surface polaritons near the surface of an epsilon-near-zero metamaterial. J Mod Opt. 2016;63(2):146–150.
  • Zhang Q, Zhou S, Fu SF, et al. Rich hybridized-polarization surface phonon polaritons in hyperbolic metamaterials. AIP Adv. 2017;7:105211-1–105211-10.
  • Zhang HC, Fan Y, Guo J, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics. 2016;3:139–146.
  • Bozhevolnyi SI, Volkov VS, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440(7083):508–511.
  • Oulton RF, Sorger VJ, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009;461(7264):629–632.
  • Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics. 2014;8:229–233.
  • Wei H, Wang ZX, Tian XR, et al. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun. 2011;2:387-1–387-5.
  • Chang DE, Sorensen AS, Demler EA, et al. A single-photon transistor using nanoscale surface plasmons. Nat Phys. 2007;3:807–812.
  • Wu YD, Huang ML, Chen MH, et al. New all-optical switch based on the local nonlinear plasmonic Mach-Zehnder interferometer waveguides. PIERS proceedings; 2013. Stockholm: EM Academy. p. 452.
  • Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;377(3):528–539.
  • Zhu AY, Kuznetsov AI, Luk’yanchuk B, et al. Traditional and emerging materials for optical metasurfaces. Nanophotonics. 2017;6(2):452–471.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Melo LG. Theory of magnetically controlled low-terahertz surface plasmon–polariton modes in graphene–dielectric structures. J Opt Soc Am B. 2015;32:2467–2477.
  • Kristinsson K, Kibis OV, Morina S, et al. Control of electronic transport in graphene by electromagnetic dressing. Sci Rep. 2016;6:20082-1–20082-7.
  • Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature. 2011;474:64–67.
  • Gan X, Shiue R, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics. 2013;7:883–887.
  • Lu H, Zeng C, Zhang Q, et al. Graphene-based active slow surface plasmon polaritons. Sci Rep. 2015;5:8443-1–8443-7.
  • Baqir MA, Choudhury PK. Graphene-based slab waveguide for slow-light propagation and mode filtering. J Electromagn Waves Appl. 2017;31(18):2055–2063.
  • Shi B, Cai W, Zhang X, et al. Tunable band-stop filters for graphene plasmons based on periodically modulated grapheme. Sci Rep. 2016;6:26796-1–26796-7.
  • Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer. Nat Photonics. 2011;5:411–415.
  • Ooi KJA, Tan DTH. Nonlinear graphene plasmonics. Proc R Soc A. 2017;473:0433-1–0433-25.
  • Ming L, Yang C, Guang-Can G, et al. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Phys Sin. 2017;66(14):144202-1–144202-10.
  • Heeres RW, Kouwenhoven LP, Zwiller V. Quantum interference in plasmonic circuits. Nat Nanotechnol. 2013;8:719–722.
  • Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys. 2015;78:013901-1–013901-34.
  • Krasnok A, Glybovski S, Petrov M. Demonstration of the enhanced purcell factor in all-dielectric structures. Appl Phys Lett. 2016;108:211105-1–211105-4.
  • Leung KM. p-Polarized nonlinear surface polaritons in materials with intensity-dependent dielectric functions. Phys Rev B. 1985;32:5093–5101.
  • Yang X, Hu C, Deng H, et al. Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs. Opt Express. 2013;21(20):23631–23639.
  • Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–748.
  • Rishard KPM, Li C, Roger T, et al. Z-scan characterization of epsilon-near-zero metamaterial. Proceedings of the conference PHOTON 14, Session 1; 2014 September 1–4; London.
  • Liu H, Guo H, Fu L, et al. Three-dimensional photonic metamaterial at optical frequencies. Nat Mater. 2008;7:31–37.
  • Alù A, Salandrino A, Engheta N. Negative effective permeability and left-handed materials at optical frequencies. Opt Express. 2006;14(4):1557–1567.
  • Toal B, McMillen M, Murphy A, et al. Optical and magnetooptical properties of gold core cobalt shell magnetoplasmonic nanowire arrays. Nanoscale. 2014;6:12905–12911.
  • Atmatzakis E, Papasimakis N, Fedotov V, et al. Giant Kerr rotation enhancement in magneto-plasmonic metamaterials. CLEO: Science and Innovations 2014; 2014 June 8–13, San Jose, CA [session plasmonic devices].
  • Toal B, McMillen M, Murphy A. Tunable magneto-optical metamaterials based on photonic resonances in nickel nanorod arrays. Mater Res Express. 2014;1:015801–015812.
  • Vulis D, Li Y, Reshef O, et al. Monolithic CMOS-compatible zero-index metamaterial. CLEO: Science and Innovations 2016; 2016 June 5–10, San Jose, CA [session integrated silicon photonic devices].
  • Boardman AD, Grimalsky VV, Kivshar YS, et al. Active and tunable metamaterials. Laser Photon Rev. 2011;5:287–307.
  • Giovampaola CD, Engheta N. Digital metamaterials. Nat Mater. 2014;13:1115–1121.
  • Urbas AM, Jacob Z, Negro LD, et al. Roadmap on optical metamaterials. J Opt. 2016;18:093005–093058.
  • Kalanoor BS, Gouda L, Gottesman R, et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. ACS Photonics. 2016;3:361–370.
  • Gorbach AV. Nonlinear graphene plasmonics: amplitude equation. Phys Rev. 2013;A87:013830-1–013830-7.
  • Smirnova DA, Gorbach AV, Iorsh IV, et al. Nonlinear switching with a graphene coupler. Phys Rev B. 2013;88:045443-1–045443-5.
  • Yarmoghaddam E, Rakheja S. Dispersion characteristics of THz surface plasmons in nonlinear graphene-based parallel-plate waveguide with Kerr-type core dielectric. J Appl Phys. 2017;122:083101-1–083101-10.
  • Jiang X, Bao J, Zhang B, et al. Dual nonlinearity controlling of mode and dispersion properties in graphene-dielectric plasmonic waveguide. Nanoscale Res Lett. 2017;12:395-1–395-6.
  • Groza AD, Strizhevskii VL. Properties of p-polarized nonlinear surface polaritons. Phys Stat Sol (b). 1991;163:381–388.
  • Dmitruk NL, Litovchenko VG, Strizhevskii VL. Surface polaritons in semiconductors and dielectrics. 1st ed. Kiev: Naukova Dumka; 1989. p. 13.
  • Liu ZK, Xie YN, Geng L, et al. Research of the method for measurement of graphene’s carrier density. Rom J Phys. 2016;61(5–6):970–979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.