483
Views
1
CrossRef citations to date
0
Altmetric
Articles

Ultra-wideband symmetric G-shape metamaterial-based microwave absorber

&
Pages 2078-2085 | Received 25 Apr 2018, Accepted 16 Jun 2018, Published online: 09 Jul 2018

References

  • Lemoult F, Kaina N, Fink M, et al. Wave propagation control at the deep subwavelength scale in metamaterials. Nat. Phys. 2012;9:2480.
  • Kadic M, Bückmann T, Schittny R, et al. Metamaterials beyond electromagnetism. Rep Progress Phys. 2013;76:126501. doi: 10.1088/0034-4885/76/12/126501
  • Kaina N, Lemoult F, Fink M, et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature. 2015;525:77–81. doi: 10.1038/nature14678
  • Smith DR, Padilla WJ, Vier D, et al. Composite medium with simultaneously negative permeability and permittivity. Phy Rev Lett. 2000;84:4184. doi: 10.1103/PhysRevLett.84.4184
  • Pendry JB. Negative refraction makes a perfect lens. Phy Rev Lett. 2000;85:3966. doi: 10.1103/PhysRevLett.85.3966
  • Zhai SL, Zhao XP, Liu S, et al. Inverse Doppler effects in broadband acoustic metamaterials. Scient Rep. 2016;6:32388. doi: 10.1038/srep32388
  • Pendry JB, Schurig D, Smith DR. Controlling EM fields. Science. 2006;312:1780–1782. doi: 10.1126/science.1125907
  • Naqvi A, Khan MS, Braaten BD. A 1 × 2 microstrip array with reduced mutual coupling achieved with a cylindrically-shaped cloaking-based surface. Microw Opt Techn Lett. 2016;58:296–301. doi: 10.1002/mop.29560
  • Dong Y, Itoh T. Metamaterial-based antennas. Proceed IEEE. 2012;100:2271–2285. doi: 10.1109/JPROC.2012.2187631
  • Ebrahimi A, Withayachumnankul W, Al-Sarawi S, et al. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors J. 2014;14:1345–1351. doi: 10.1109/JSEN.2013.2295312
  • Ding J, Fing L, Zhang S-Y, et al. Simultaneous realization of slow and fast accoustioc waves using fractal structure of Koch curve. Scient Rep. 2018;8:1481. doi: 10.1038/s41598-018-19797-x
  • Yoo YJ, Zheng HY, Kim YJ, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. App Phy Lett. 2014;105:041902. doi: 10.1063/1.4885095
  • Wang N, Dong X, Zhou W, et al. Low-frequency metamaterial absorber with small-size unit cell based on corrugated surface. AIP Adv. 2016;6:025205. doi: 10.1063/1.4941933
  • Baqir MA, Choudhury PK. Toward filtering aspects of silver nanowire-based hyperbolic metamaterial. Plasmonics. 2018. https://doi.org/10.1007/s11468-018-0717-3.
  • Ramya S, Rao IS. A compact ultra-thin ultra-wideband microwave metamaterial absorber. Microw Opt Tech Lett. 2016;59:1837–1845. doi: 10.1002/mop.30636
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE Phot Tech Lett. 2017;29:1548–1551. doi: 10.1109/LPT.2017.2735453
  • Moghaddas S, Ghasemi M, Choudhury PK, et al. Engineered metasurface of gold funnels for terahertz wave filtering. Plasmonics. 2018. https://doi.org/10.1007/s11468-017-0668-0
  • Ghasemi M, Choudhury PK, Baqir MA. On the metasurface-based comb filters. IEEE Phot Tech Lett. 2016;28:1100–1103. doi: 10.1109/LPT.2016.2531102
  • Naqvi A, Khan MS, Braaten BD. A frequency reconfigurable cylindrically-shaped surface with cloaking-like properties. Microw Opt Technol Lett. 2016;58:1323–1329. doi: 10.1002/mop.29793
  • Ghosh S, Bhattacharyya S, Chaurasiya D, et al. An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Ant Wirel Propag Lett. 2015;14:1172–1175. doi: 10.1109/LAWP.2015.2396302
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Pys Rev Lett. 2008;100:207402. doi: 10.1103/PhysRevLett.100.207402
  • Ma B, Liu S, Bian B, et al. Novel three-band microwave metamaterial absorber. J Electromag Wav App. 2014;28:1478–1486. doi: 10.1080/09205071.2014.929050
  • Dincer F, Karaaslan M, Unal E, et al. Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips. J Electromag Wav App. 2014;28:741–751. doi: 10.1080/09205071.2014.888322
  • Tao H, Kadlec EA, Strikwerda AC, et al. Microwave and terahertz wave sensing with metamaterials. Opt Exp. 2011;19:21620–21626. doi: 10.1364/OE.19.021620
  • Rhee JY, Yoo YJ, Kim KW, et al. Metamaterial based perfect absorbers. J Electromag Waves App. 2014;28:1541–1580. doi: 10.1080/09205071.2014.944273
  • Long C, Yin S, Wang W, et al. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Nat Sci Rep. 2016;6:21431. doi: 10.1038/srep21431
  • Wang N, Dong X, Zhou W, et al. Low-frequency metamaterial absorber with small-size unit cell based on corrugated surface. AIP Adv. 2016;6:025205. doi: 10.1063/1.4941933
  • Xiang Y, Long C, Li J, et al. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide array. Nat Sci Rep. 2015;5:15367. doi: 10.1038/srep15367
  • Baqir MA, Ghasemi M, Choudhury PK, et al. Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. J Electromag Wav Appl. 2015;29:2408–2419. doi: 10.1080/09205071.2015.1073124
  • Liu X, Starr T, Starr AF, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phy Rev Lett. 2010;104:045901-1–045901-4.
  • Cheng YZ, Nie1a Y, Gong RZ, et al. Multi-band metamaterial absorber using cave-cross resonator. Eur Phys J Appl Phys. 2011;56:31301-1–31301-6. doi: 10.1051/epjap/2011110206
  • Tuong PV, Park JW, Rhee JY, et al. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. App Phy Lett. 2013;102:0811220-1–081122-3. doi: 10.1063/1.4794173
  • Balanis CA. Advance engineering electromagnetics. New York: Wiley; 2012.
  • Rogers Corporation. [cited 2018 Mar 15]. Available from: www.rogerscorp.com.
  • Yu B, Yang K, Sim C-Y-D, et al. A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Trans AntennProp. 2018;66:462–466. doi: 10.1109/TAP.2017.2772084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.