187
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reduction of leaky wave coupling in a superstrate loaded antenna using metamaterial

, &
Pages 2292-2303 | Received 10 Apr 2017, Accepted 29 Jul 2018, Published online: 15 Aug 2018

References

  • Wallace JW, Jensen MA, Swindlehurst AL, et al. Experimental characterization of the MIMO wireless channel: data acquisition and analysis. IEEE Trans Wirel Commun. 2003;2(2):335–343. doi: 10.1109/TWC.2003.808975
  • Gangwar D, Das S, Yadava RL. Reduction of mutual coupling in metamaterial based microstrip antennas: the progress in last decade. Wirel Pers Commun. 2014;77(4):2747–2770. doi: 10.1007/s11277-014-1666-6
  • Yang F, Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans MicrowTheory Tech. 2003;51(10):2936–2946.
  • Fu YQ, Zheng QR, Gao Q, et al. Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures. J Electromagn Wave Appl. 2006;20(6):819–825. doi: 10.1163/156939306776143415
  • Farahani HS, Veysi M, Kamyab M, et al. Mutual coupling reduction in patch antenna arrays using a UC-EBG superstate. IEEE Antennas Wirel Propag Lett. 2010;9:57–59. doi: 10.1109/LAWP.2010.2042565
  • Zhu FG, Xu JD, Xu Q. Reduction of mutual coupling between closely-packed antenna elements using defected ground structure. Electron Lett. 2009;45(12):601–602. doi: 10.1049/el.2009.0985
  • Xu HX, Wang GM, Qi MQ. Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array. IEEE Trans Magnet. 2013;49(4):1526–1529. doi: 10.1109/TMAG.2012.2230272
  • Qamar Z, Naeem U, Khan SA, et al. Mutual coupling reduction for high-performance densely packed patch antenna arrays on finite substrate. IEEE Trans Antennas Propag. 2016;64(5):1653–1660. doi: 10.1109/TAP.2016.2535540
  • Liu Z, Wang J, Qu S, et al. Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials. Appl Phys Lett. 2016;109(15):153505–1 -5. doi: 10.1063/1.4964513
  • Hwangbo S, Yang HY, Yoon YK. Mutual coupling reduction using micromachined complementary meander-line slots for a patch array antenna. IEEE Antennas Wirel Propag Lett. 2017;16:1667–1670. doi: 10.1109/LAWP.2017.2663114
  • Cheng YF, Ding X, Shao W, et al. Reduction of mutual coupling between patch antennas using a polarization-conversion isolator. IEEE Antennas Wirel Propag Lett. 2017;16:1257–1260. doi: 10.1109/LAWP.2016.2631621
  • Jackson DR, Alexopoulus NG. Gain enhancement method for printed circuits antennas. IEEE Trans Antennas Propag. 1985;AP33:976–987. doi: 10.1109/TAP.1985.1143709
  • Vettikalladi H, Lafond O, Himdi M. High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antennas Wirel Propag Lett. 2009;8:1422–1425. doi: 10.1109/LAWP.2010.2040570
  • Jackson DR, Oliner AA. Leaky-wave antennas. Modern Antenna Handbook. 2008: 325–367. doi: 10.1002/9780470294154.ch7
  • Tamir T, Oliner AA. Guided complex waves. Part 1: fields at an interface. Proc Inst Electr Eng. 1963;110:310–324. doi: 10.1049/piee.1963.0044
  • Shah KH, Sonagara JS, Patel SK, et al. Design of optical leaky wave antenna with circular and diamond Si perturbations for enhancing its performance. Microw Opt Technol Lett. 2018;60(6):1395–1398. doi: 10.1002/mop.31174
  • Llombart N, Neto A, Gerini G, et al. Impact of mutual coupling in leaky wave enhanced imaging arrays. IEEE Trans Antennas Propag. 2008;56:1201–1206. doi: 10.1109/TAP.2008.919223
  • Lovat G, Burghignoli P, Capolino F, et al. High directivity in low permittivity metamaterial slabs: ray-optic vs. leaky wave models. Microw Opt Technol Lett. 2006;48(12):2542–2548. doi: 10.1002/mop.22004
  • Li D, Szabo Z, Qing X, et al. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans Antennas Propag. 2012;60(12):6018–6023. doi: 10.1109/TAP.2012.2213231
  • Szabo Z, Park GH, Hedge R, et al. A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans Microw Theory Tech. 2010;58(10):2646–2653. doi: 10.1109/TMTT.2010.2065310
  • Sarkar D, Singh A, Saurav K, et al. Four-element quad-band multiple-input–multiple-output antenna employing split-ring resonator and inter-digital capacitor. IET Microw Antennas Propag. 2015;9(13):1453–1460. doi: 10.1049/iet-map.2015.0189
  • Pozar DM, Kaufman B. Comparison of three methods for the measurement of printed antenna efficiency. IEEE Trans Antennas Propag. 1988;36(1):136–139. doi: 10.1109/8.1084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.