148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and analysis of a fiber-optic deep-etched silicon photonic crystal temperature sensor

Pages 226-235 | Received 15 Mar 2018, Accepted 10 Oct 2018, Published online: 23 Oct 2018

References

  • Jung I, Park B, Provine J, et al. Highly sensitive monolithic silicon photonic crystal fiber Tip sensor for simultaneous measurement of refractive index and temperature. J Lightwave Technol. 2011;29(9):1367–1374. doi: 10.1109/JLT.2011.2126018
  • Park B, Jung IW, Provine J, et al. Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon Technol Lett. 2014;26(9):900–903. doi: 10.1109/LPT.2014.2309345
  • Park B, Provine J, Jung I, et al. Photonic crystal fiber tip sensor for high-temperature measurement. IEEE Sensors J. 2011;11(11):2643–2648. doi: 10.1109/JSEN.2011.2153844
  • Jung I, Park B, Provine J, et al. Photonic crystal fiber tip sensor for precision temperature sensing. Proceedings of IEEE LEOS Annual Meeting Conference; 2009 Oct. 4–8, Belek-Antalya, Turkey.
  • Park B, Jung I, Provine J, et al. Monolithic silicon photonic crystal fiber tip sensor for refractive index and temperature sensing. Paper presented at: IEEE Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science; 2010 May 16–21, San Jose, USA.
  • Chang C, Solgaard O. Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt Express. 2013;21(22):27209–27218. doi: 10.1364/OE.21.027209
  • Chang C, Solgaard O. Integrated silicon photonic temperature sensors based on Bragg reflectors with asymmetric Fano lineshapes. Paper presented at: IEEE 9th International Conference on Group IV Photonics (GFP); 2012 Aug. 29–31, San Diego, USA.
  • Chang C, Solgaard O. Asymmetric Fano lineshapes in integrated silicon Bragg reflectors. Paper presented at: Conference on Lasers and Electro-Optics; 2012 May 6–11, San Jose, USA.
  • Klimov N, Mittal S, Berger M. On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt Lett. 2015;40(17):3934–3936. doi: 10.1364/OL.40.003934
  • Klimov N, Purdy T, Ahmed Z. Fabry-Perrot cavity-based silicon photonic thermometers with ultra-small footprint and high sensitivity. Paper presented at: Advanced photonics; 2015 June 27, Boston, USA.
  • Kim G, Lee H, Park C, et al. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt Express. 2010;18(21):22215–22221. doi: 10.1364/OE.18.022215
  • Xu H, Hafezi M, Fan J, et al. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt Express. 2014;22(3):3098–3104. doi: 10.1364/OE.22.003098
  • Kim H, Yu M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt Express. 2016;24(9):9501–9510. doi: 10.1364/OE.24.009501
  • Qiu C, Hu T, Yu P, et al. A temperature sensor based on silicon eye-like microring with sharp asymmetric Fano resonance. Paper presented at: IEEE 9th International Conference on Group IV Photonics (GFP); 2012 Aug. 29–31; San Diego, CA, USA.
  • Klimov N, Berger M, Ahmed Z. Towards reproducible ring resonator based temperature sensors. Sens Transducers J. 2015;191(8):63–66.
  • Tao J, Cai H, Gu Y, et al. Demonstration of a photonic-based linear temperature sensor. IEEE Photon Technol Lett. 2015;27(7):767–769. doi: 10.1109/LPT.2015.2392107
  • Guan X, Wang X, Frandsen L. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt Express. 2016;24(15):16349–16356. doi: 10.1364/OE.24.016349
  • Lee H, Kim G, Kim W, et al. Tunable-resonator-based temperature sensor interrogated through optical power detection. Appl Phys Express. 2011;4:102201. doi: 10.1143/APEX.4.102201
  • Zarei S, Mohajerzadeh S. Exploitation of semi-sequential reactive ion etch processes to fabricate in-plane silicon structures. Micro Nano Lett. 2017;13(4):421–426. doi: 10.1049/mnl.2017.0405
  • Zarei S, Mohajerzadeh S, Shahabadi M. Design and fabrication of a fiber-optic deep-etched silicon Fabry-Perot temperature sensor. Paper presented at: IEEE International Conference on Telecommunications and Photonics (ICTP); 2017 Dec. 26–28, Dhaka, Bangladesh.
  • Lipson A, Yeatman E M. A 1-D photonic band gap tunable optical filter in (110) silicon. J Microelectromech Syst. 2007;16(3):521–527. doi: 10.1109/JMEMS.2007.892894
  • Lipson A, Yeatman EM. Low-loss one-dimensional photonic band gap filter in (110) silicon. Opt Lett. 2006;31(3):395–397. doi: 10.1364/OL.31.000395
  • St-Gelais R, Poulin A, Peter Y. Advances in modeling, design, and fabrication of deep-etched multilayer resonators. J Lightwave Technol. 2012;30(12):1900–1908. doi: 10.1109/JLT.2012.2191136
  • Masson J, Koné F, Peter Y. MEMS tunable silicon Fabry-Perot cavity. Proc Optomechatronic Micro/Nano Devices Compon III. 2007;6717:671705. doi: 10.1117/12.754325

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.